📄 conic.java
字号:
/*$************************************************************************************************ ** ** $Id: Conic.java,v 1.6 2004/03/19 04:11:44 desruisseaux Exp $ ** ** $Source: /cvsroot/geoapi/src/org/opengis/spatialschema/geometry/geometry/Conic.java,v $ ** ** Copyright (C) 2003 Open GIS Consortium, Inc. All Rights Reserved. http://www.opengis.org/Legal/ ** *************************************************************************************************/package org.opengis.spatialschema.geometry.geometry;// OpenGIS direct dependenciesimport org.opengis.spatialschema.geometry.primitive.CurveSegment;/** * Any general conic curve. Any of the conic section curves can be canonically represented * in polar co-ordinates (ρ, φ) as: * * <br><center><img src="doc-files/ConicCurve.png"></center><br> * * where "<var>P</var>" is semi-latus rectum and "<var>e</var>" is the eccentricity. This gives * a conic with focus at the pole (origin), and the vertex on the conic nearest this focus in the * direction of the polar axis, <var>φ</var>=0. * * For <var>e</var>=0, this is a circle. * For 0 < <var>e</var> < 1, this is an ellipse. * For <var>e</var>=1, this is a parabola. * For <var>e</var>>1, this is one branch of a hyperbola. * * <br><br> * * These generic conics can be viewed in a two-dimensional Cartesian parameter space * (<var>u</var>, <var>v</var>) given by the usual coordinate conversions * <var>u</var>=<var>ρ</var>cos(<var>φ</var>) and * <var>v</var>=<var>ρ</var>sin(<var>φ</var>). * We can then convert this to a 3D coordinate reference system by using an affine transformation, * (<var>u</var>, <var>v</var>) → (<var>x</var>, <var>y</var>, <var>z</var>) * which is defined by: * * (TODO: paste the matrix there). * * @UML abstract GM_Conic * @author ISO/DIS 19107 * @author <A HREF="http://www.opengis.org">OpenGIS® consortium</A> * @version 2.0 */public interface Conic extends CurveSegment {// public GM_AffinePlacement position;// public boolean shifted;// public double eccentricity;// public double semiLatusRectum;// public double startConstrParam;// public double endConstrParam;// public void setPosition(GM_AffinePlacement position) { }// public GM_AffinePlacement getPosition() { return null; }// public void setShifted(boolean shifted) { }// public boolean getShifted() { return false; }// public void setEccentricity(double eccentricity) { }// public double getEccentricity() { return 0; }// public void setSemiLatusRectum(double semiLatusRectum) { }// public double getSemiLatusRectum() { return 0; }// public void setStartConstrParam(double startConstrParam) { }// public double getStartConstrParam() { return 0; }// public void setEndConstrParam(double endConstrParam) { }// public double getEndConstrParam() { return 0; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -