📄 rplanet.c
字号:
/* The following program reduces the heliocentric equatorial * rectangular coordinates of the earth and object that * were computed by kepler() and produces apparent geocentric * right ascension and declination. */#include "kep.h"extern double pobjb[], pearthb[];extern double Clightaud;extern double lighttime;int reduce( elemnt, q, e )struct orbit *elemnt; /* orbital elements of q */double q[], e[]; /* heliocentric coordinates */{double p[3], temp[3], polar[3];double a, b, s;int i;double sqrt(), asin(), log();/* Save the geometric coordinates at TDT */for( i=0; i<3; i++ ) temp[i] = q[i];/* Display ecliptic longitude and latitude re equinox of date */if( prtflg ) lonlat( q, TDT, polar, 1 );/* If the object position was computed from heliocentric orbital * elements, then say that earth's barycentric position * is the same as its heliocentric position. */if( objnum == 99 ) { for( i=0; i<3; i++ ) pearthb[i] = e[i]; }/* Adjust for light time (planetary aberration)*/lightt( elemnt, q, e );/* Apparent distance is the light time. */fprintf( ephfile, " %.10e", Clightaud * lighttime );/* Find Euclidean vectors between earth, object, and the sun */for( i=0; i<3; i++ ) p[i] = pobjb[i] - pearthb[i];angles( p, q, e );if( prtflg ) { a = 0.0; for( i=0; i<3; i++ ) { b = temp[i] - e[i]; a += b * b; } a = sqrt(a); printf( "true geocentric distance %.7f au ", a ); /* was EO */ printf( "equatorial diameter %.2f\"\n", 2.0*elemnt->sdiam/EO );/* Calculate visual magnitude. * "Visual" refers to the spectrum of visible light. * Phase = 0.5(1+pq) = geometric fraction of disc illuminated. * where pq = cos( sun-object-earth angle ) * The magnitude is * V(1,0) + 2.5 log10( SE^2 SO^2 / Phase) * where V(1,0) = elemnt->mag is the magnitude at 1au from * both earth and sun and 100% illumination. */ a = 0.5 * (1.0 + pq);/* Fudge the phase for light leakage in magnitude estimation. * Note this phase term estimate does not reflect reality well. * Calculated magnitudes of Mercury and Venus are inaccurate. */ b = 0.5 * (1.01 + 0.99*pq); s = elemnt->mag + 2.1715 * log( EO*SO ) - 1.085*log(b); printf( "approx. visual magnitude %.1f, phase %.3f\n", s, a ); }/* Find unit vector from earth in direction of object */for( i=0; i<3; i++ ) { p[i] /= EO; temp[i] = p[i]; }if( prtflg ) {/* Report astrometric position */ showrd( "Astrometric J2000.0:", p, polar );/* Also in 1950 coordinates */ precess( temp, B1950, -1 ); showrd( "Astrometric B1950.0:", temp, polar ); }/* Correct position for light deflection */relativity( p, q, e );/* Correct for annual aberration */annuab( p );/* Precession of the equinox and ecliptic * from J2000.0 to ephemeris date */precess( p, TDT, -1 );/* Ajust for nutation * at current ecliptic. */epsiln( TDT );nutate( TDT, p );/* Display the final apparent R.A. and Dec. * for equinox of date. */if( prtflg ) printf ("%s.", whatconstel (p, TDT));ephprint = 1;showrd( " Apparent:", p, polar );ephprint = 0;/* Go do topocentric reductions. */polar[2] = EO;altaz( polar, UT );return(0);}extern struct orbit *elobject;extern double robject[];int doplanet(){ /* calculate heliocentric position of the object */ kepler( TDT, elobject, robject, obpolar ); /* apply correction factors and print apparent place */ reduce( elobject, robject, rearth ); return 0;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -