⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 aalineaalgebra.html

📁 c源码
💻 HTML
字号:
<HTML>
<HEAD>
<TITLE> Linear Algebra : Function In Language C. </TITLE>
</HEAD>
<BODY>  

<HR>
<A HREF="http://groups.yahoo.com/group/mathc/">Mathc</A> : The group of this work.

<HR>
<A HREF="http://www.geocities.com/xhungab/calculus.html">Calculus</A>,
<A HREF="http://www.geocities.com/xhungab/gnuplot.html">Gnuplot</A>. The other packages, 

  
<HR>
<H4><U>Linear Algebra</U> :  Language C (version 8).</H4> 

 The purpose of this work is to verify with numeric </br>
 applications, some properties of the linear algebra.</br>
 It is a set of functions write in language C.</P> 

 * You need a C compiler to compile the code (source).</br> 
 * For this work, I use  
   <A HREF="http://www.simtel.net/pub/pd/17456.html">Dev-C++ 4</A>, 
   and 
   <A HREF="http://www.delorie.com/djgpp/zip-picker.html">DJGPP</A> two freewares. </br> 
 * The graphic interface is gnuplot.</br>
 * You can download this freeware here : <A HREF="http://www.gnuplot.info/">Gnuplot Central</A>. </br>
 * My work is also a Freeware.</br> 
 * Windows, Linux.</br>
<HR>

<A HREF="http://www.geocities.com/xhungab/linear/matrxf.zip">matrxf.zip</A>            
             : You can work with fractions.</P>

               addm, subm, multm, powm, smultm, transpose, trace,det, minor, mminor,</br>
               cofactor, mcofactor,adjoint,inverse(adjoint), inverse(gaussjordan),</br>                         inverse(identity matrix), gauss, gaussjordan, LU.</P>

               norm, distance, innerproduct,coldim, rowdim, rank, nullity, leastsqrs</P>

<A HREF="http://www.geocities.com/xhungab/linear/matrxg.zip">matrxg.zip</A>
             : You can also work with integers.</P>

<A HREF="http://www.geocities.com/xhungab/linear/matrxh.zip">matrxh.zip</A>
             : The print, copy, rand, ... functions.</P>

<A HREF="http://www.geocities.com/xhungab/linear/matrxj.zip">matrxj.zip</A>
             : System of equations with free variables.</P>

<HR>
<H4> In this section, the size of the matrices, are randomly selected</br> 
      by the computer, but you can selecte the size if you want. </P>                
</H4>

<H4><U>Verify with numeric applications</U>:</H4>


<A HREF="http://www.geocities.com/xhungab/linear/mtrxaa.zip">mtrxaa.zip</A>
                : How to use the basic functions.</P>
                  when the size of the matrices are randomly selected by the computer.</P>

<A HREF="http://www.geocities.com/xhungab/linear/mtrxab.zip">mtrxab.zip</A> </P> 
                 The properties of matrix arithmetic.</P>
                       
                                 A+B = B+A </br>         
                             (A+B)+C = A+(B+C)</br>
                               (AB)C = A(BC)</br>
                              A(B+C) = AB+AC</br>
                              (B+C)A = BA+CA</br>
                              A(B-C) = AB-AC</br>
                              (B-C)A = BA-CA</br>
                              a(B+C) = aB+aC</br>
                              a(B-C) = aB-aC</br>
                              (a+b)C = aC+bC</br>
                              (a-b)C = aC-bC</br>
                               a(bC) = (ab)C</P>
                                           

<A HREF="http://www.geocities.com/xhungab/linear/mtrxac.zip">mtrxac.zip</A> :</P>
                   
                * The properties of zero matrices.</br>
                * The properties of the transpose.</br>
                * The theorem of transpose.</br>
                * The theorem of inverse matrices.  </P>
                                     

<A HREF="http://www.geocities.com/xhungab/linear/mtrxad.zip">mtrxad.zip</A> :</P>
                    
                * (A+B)**2.</br>
                * (A-B)**2.</br>
                * (A-B) (A+B).</br>
                * Power and inverse.</br>
                * Symetric and Skew-Symetric matrices.</P>  
                                    

<A HREF="http://www.geocities.com/xhungab/linear/mtrxae.zip">mtrxae.zip</A> :</P>
                       
                * Solving linear systems by matrix inversions.</br>
                * Linear systems with common coefficient matrix.</P>                           


<A HREF="http://www.geocities.com/xhungab/linear/mtrxaf.zip">mtrxaf.zip</A>  :</P>
                   
                * The system of equation Ax = b is consistent.</br>
                * Inverses of symmetric matrices.</br>
                * Power, inverse of diagonal matrices</br>
                * Multiply, inverse of triangular matrices.</br>
                * Trace property. </P>
                                       
<A HREF="http://www.geocities.com/xhungab/linear/mtrxag.zip">mtrxag.zip</A></P>  
                  The value of the determinant of </P>
                * a diagonal matrix</br>
                * a triangular matrix (upper, lower)</br>
                * a basic matrix.</P>  

<A HREF="http://www.geocities.com/xhungab/linear/mtrxah.zip">mtrxah.zip</A> </P>  
                  LU decomposition :</P>        
                * LU decomposition.</br>
                * Det(A) = Det(L).</br>
                * invA = invU invL.</br>
                * LU decomposition are not unique.</P>   


<A HREF="http://www.geocities.com/xhungab/linear/vectaa.zip">vectaa.zip</A> :</P>
                  Some vector space axioms on (rows,</br> 
                  columns) vectors and  on polynomials.</P> 

                   *        u + v = v + u        </br>          
                   *  (u + v) + w = u + (v + w)  </br>
                   *        0 + u = u + 0    = u </br>        
                   *     u + (-u) = (-u) + u = 0 </br>          
                   *     k( u+ v) = ku + kv      </br>
                   *    (k + l) u = ku + lu      </br>
                   *       k (lu) = (kl) u       </P>

<A HREF="http://www.geocities.com/xhungab/linear/vectab.zip">vectab.zip</A> :</P>
                   * Properties of Euclidian inner product in R**n.</br>
                   * Properties of length   in R**n.</br>
                   * Properties of distance in R**n.</br>
                   * u.v = 1/4 ||u+v||**2  -  1/4 ||u-v||**2. </br>
                   * Cauchy-Schwarz inequality in R**n.</br>
                   * If u.v =0 :  ||u+v||**2 = ||u||**2 + ||v||**2.</P>


<A HREF="http://www.geocities.com/xhungab/linear/vectac.zip">vectac.zip</A> :</P>
You can see the result in Gnuplot.</P>

                   * Reflection about the x-axis.</br>
                   * Reflection about the y-axis.</br>
                   * Reflection about the line y = x.</br>
                   * Orthogonal projection on the x-axis. </br>
                   * Orthogonal projection on the y-axis.</P>


<A HREF="http://www.geocities.com/xhungab/linear/vectad.zip">vectad.zip</A> :</P>
You can see the result in Gnuplot.</P>

                   * Vector2d  (vertical horizontal shift).</P>


<A HREF="http://www.geocities.com/xhungab/linear/vectae.zip">vectae.zip</A> :</P>
You can see the result in Gnuplot.</P>

                   * Reflection about the xy-plan.</br>
                   * Reflection about the xz-plan.</br>
                   * Reflection about the yz-plan.</br>
                   * Orthogonal projection on the xy-plan. </br>
                   * Orthogonal projection on the xz-plan. </br>
                   * Orthogonal projection on the yz-plan. </P>


<A HREF="http://www.geocities.com/xhungab/linear/vectag.zip">vectag.zip</A> :</P>

        * Linear combination in R**n, Pn.</br>
        * Linear combination of two vectors   in R**n, Pn.</br>
        * Linear combination of three vectors in R**n, Pn.</br>
        * Vectors dependant or independant    in R**n, Pn.</br>
        * Find the coordinate vector of (w)s  in R**n, Pn.</br>
        * Find the coordinate vector of  w.   in R**n, Pn.</P>


<A HREF="http://www.geocities.com/xhungab/linear/vectah.zip">vectah.zip</A> :</P>

     Inner product, norm, Distance in M22, Mnn, Mnm.</P>
        
       * Properties of Euclidian inner product </br>
       * Properties of distance.</br>
       * u.v = 1/4 ||u+v||**2  -  1/4 ||u-v||**2.</P>

<A HREF="http://www.geocities.com/xhungab/linear/vectai.zip">vectai.zip</A> :</P>

     Inner product, norm, Distance on R**n generated by A..</P>
        
       * Properties of inner product on R**n generated by A.</br>
       * Properties of distance on R**n generated by A.</br>
       * u.v = 1/4 ||u+v||**2  -  1/4 ||u-v||**2.</P> 


<A HREF="http://www.geocities.com/xhungab/linear/vectaj.zip">vectaj.zip</A> :</P>

     Weighed Euclidean Inner Product, norm, distance on R**n.</P>
        
     * Properties of Weighed Euclidean Inner Product on R**n.</br>
     * Properties of distance generated by </br>
       the Weighed Euclidean Inner Product on R**n.</br>
     * u.v = 1/4 ||u+v||**2  -  1/4 ||u-v||**2. </P>


<A HREF="http://www.geocities.com/xhungab/linear/vectak.zip">vectak.zip</A> :</P>

              The Gram-Schmidt process.</P>      
       
     * with the Euclidean inner product in R**n.</br>
     * with the inner product in M2x2.</br>
     * with the inner product in M3x2.</br>
     * with the inner product in M3x3.</br>
     * with the Inner Product on R**n generated by A.</P>

<A HREF="http://www.geocities.com/xhungab/linear/vectal.zip">vectal.zip</A> :</P>

              Least squares, Orthogonal matrices</P>.      

     * least squares solution of the linear system Ax = b.</br>
     * properties of Orthogonal matrices.</P> 


<A HREF="http://www.geocities.com/xhungab/linear/vectam.zip">vectam.zip</A> :</P>

              Eigenvalue, Eigenvector, Cayley-Hamilton theorem.</P>.        
       
     * Some properties of Eigenvalue, Eigenvector.</br>
     * The  properties of the Cayley-Hamilton theorem.</P> 


<A HREF="http://www.geocities.com/xhungab/linear/vectan.zip">vectan.zip</A> :</P>

     Some linear transformation. Is T a linear transformation?</P>

      * T(A) = AX.</br>
      * T(A) = trace(A).</br>
      * T(x1,x2,x3) = (x1 + x2 + x3).</br>
      * Matrix Inner Product on Mnxn.</br>
      * Euclidean Inner Product on R**n.</br>
      * Inner Product on R**n generated by A.</br>
      * Weighed Euclidean Inner Product on R**n.</P>


<A HREF="http://www.geocities.com/xhungab/linear/vectao.zip">vectao.zip</A> :</P>
                
     Similarity</P>

      * B is similar to A.</br>   
      * B is similar to A, also A is similar to B.</br>  

      * A and invPAP have the same determinant.</br>
      * A is invertible if and only, if invPAP is invertible.</br>  
      * A and invPAP have the same rank.</br>
      * A and invPAP have the same nullity.</br>
      * A and invPAP have the same trace.</br>
      * A and invPAP have the same, characteristic equation.</br>
      * The eigenvector of invPAP.</br>  

      * If B is similar to A, then TrpsB and TrpsA are similar.</P>
                                   
 
<HR><H4><U>Application</U>:</H4>               


<A HREF="http://www.geocities.com/xhungab/linear/mtrxid.zip">mtrxid.zip</A>
                : Identity matrix application   I</P>
                * Swap two rows.            </br>                           
                * The pivot value.                 </br>                   
                * Eliminate the coefficient below, above, the pivot.  </br>
                * Gauss Jordan elimination with the help of the identity matrix.</br>
                * Inverse of the matrix    with the help of the identity matrix.</P>

       
<A HREF="http://www.geocities.com/xhungab/linear/mtrxic.zip">mtrxic.zip</A>
                : Identity matrix application  II</P>
                * The work on a column in one step. </br>                 
                * All the values below the pivot in one step.    </br>     
                * Application : Gauss  elimination.    </br>    
                * All the values above the pivot in one step.   </br>     
                * Application : Gauss Jordan elimination</br>
                * Application : Inverse of the matrix</P>


<A HREF="http://www.geocities.com/xhungab/linear/mtrxgo.zip">mtrxgo.zip</A>
                :  Geometric application.</P>
                   You can verify the result into GnuPlot.</P>
                * Find the coefficients of a polynome,</br> 
                  that passes through three, four, five points. </P>   
                * Find the coefficients a, b, c, d, e of a conic,</br>
                  ax**2 + by**2 + cx + dy + e  = 0 </br>
                  that passes through  four points.  </P>
                * Find the coefficients a, b, c, d  of a circle,</br>
                  a(x**2 + y**2) + bx + cy + d  = 0  </br> 
                  that passes through  three points. </P>
 

<A HREF="http://www.geocities.com/xhungab/linear/mtrxch.zip">mtrxch.zip</A>
                : Chemistry application.</P>
                * Find the coefficients of a chemical equation.</P>


<A HREF="http://www.geocities.com/xhungab/linear/mtrxsy.zip">mtrxsy.zip</A>
                : Resolve some nonlinear systems of equations.</P>


</BODY>
</HTML>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -