📄 rtai_sched.c
字号:
/*COPYRIGHT (C) 2000 Paolo Mantegazza (mantegazza@aero.polimi.it)This program is free software; you can redistribute it and/or modifyit under the terms of version 2 of the GNU General Public License aspublished by the Free Software Foundation.This program is distributed in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied warranty ofMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See theGNU General Public License for more details.You should have received a copy of the GNU General Public Licensealong with this program; if not, write to the Free SoftwareFoundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA*//*ACKNOWLEDGMENTS: - Steve Papacharalambous (stevep@zentropix.com) has contributed a very informative proc filesystem procedure.- Stuart Hughes (sehughes@zentropix.com) has helped in porting this module to 2.4.xx.- Stefano Picerno (stefanopp@libero.it) for suggesting a simple fix to distinguish a timeout from an abnormal retrun in timed sem waits.- Geoffrey Martin (gmartin@altersys.com) for a fix to functions with timeouts. */#define ALLOW_RR#define ONE_SHOT 0#define PREEMPT_ALWAYS 0#define LINUX_FPU 1#ifndef __MVM__#include <linux/module.h>#include <linux/kernel.h>#include <linux/version.h>#include <linux/errno.h>#include <linux/slab.h>#include <linux/kernel.h>#include <linux/timex.h>#include <linux/sched.h>#include <asm/param.h>#include <asm/system.h>#include <asm/io.h>#include <asm/segment.h>#ifdef CONFIG_PROC_FS#include <linux/stat.h>#include <linux/proc_fs.h>#include <rtai_proc_fs.h>#endif#define INTERFACE_TO_LINUX#include <rtai.h>#include <asm/rtai_sched.h>#include <rtai_sched.h>#include <rtai_trace.h>#else /* !__MVM__ */#define INTERFACE_TO_LINUX#include "vrtai/rtai_sched.h"#include "vrtai/rtai_trace.h"#endif /* !__MVM__ */MODULE_LICENSE("GPL");#if defined(CONFIG_RTAI_DYN_MM) || defined(CONFIG_RTAI_DYN_MM_MODULE)//#include <rt_mem_mgr.h>#define sched_malloc(size) rt_malloc((size))#define sched_free(adr) rt_free((adr))#if defined(CONFIG_RTAI_DYN_MM_MODULE)#define sched_mem_init()#define sched_mem_end()#else#define sched_mem_init() \ { if(rt_mem_init() != 0) { \ printk("Failed to allocate memory for task stack(s)\n"); \ return(-ENOMEM); \ } }#define sched_mem_end() rt_mem_end()#endif#define call_exit_handlers(task) __call_exit_handlers(task)#define set_exit_handler(task, fun, arg1, arg2) __set_exit_handler(task, fun, arg1, arg2)#else#define sched_malloc(size) kmalloc((size), GFP_KERNEL)#define sched_free(adr) kfree((adr))#define sched_mem_init()#define sched_mem_end()#define call_exit_handlers(task)#define set_exit_handler(task, fun, arg1, arg2)#endif#define RT_SEM_MAGIC 0xaabcdeff#define SEM_ERR (0xFfff)#define MSG_ERR ((RT_TASK *)0xFfff)#define NOTHING ((void *)0)#define SOMETHING ((void *)1)#define TIMER_FREQ FREQ_8254#ifdef CONFIG_PROC_FSstatic int rtai_proc_sched_register(void);static void rtai_proc_sched_unregister(void);#endifstatic RT_TASK *rt_current;static RT_TASK *fpu_task;static RT_TASK rt_linux_task;DEFINE_LINUX_CR0static RTIME rt_time_h;static int rt_half_tick;static int oneshot_timer;static int oneshot_running;static int shot_fired;static int preempt_always;static RT_TASK *wdog_task;static int rt_next_tid = 1; /* Next task ID */#define SEMHLF 0x0000FFFF#define RPCHLF 0xFFFF0000#define RPCINC 0x00010000#define MAX_SRQ 64static struct { int srq, in, out; void *mp[MAX_SRQ]; } frstk_srq;/* ++++++++++++++++++++++++++++++++ TASKS ++++++++++++++++++++++++++++++++++ */static inline void enq_ready_edf_task(RT_TASK *ready_task){ RT_TASK *task; task = rt_linux_task.rnext; while (task->policy < 0 && ready_task->period >= task->period) { task = task->rnext; } task->rprev = (ready_task->rprev = task->rprev)->rnext = ready_task; ready_task->rnext = task;}static inline void enq_ready_task(RT_TASK *ready_task){ RT_TASK *task; task = rt_linux_task.rnext; while (ready_task->priority >= task->priority) { task = task->rnext; } task->rprev = (ready_task->rprev = task->rprev)->rnext = ready_task; ready_task->rnext = task;}static inline int renq_ready_task(RT_TASK *ready_task, int priority){ int retval; if ((retval = ready_task->priority != priority)) { ready_task->priority = priority; (ready_task->rprev)->rnext = ready_task->rnext; (ready_task->rnext)->rprev = ready_task->rprev; enq_ready_task(ready_task); } return retval;}static inline void rem_ready_task(RT_TASK *task){ if (task->state == READY) { (task->rprev)->rnext = task->rnext; (task->rnext)->rprev = task->rprev; }}static inline void rem_ready_current(void){ (rt_current->rprev)->rnext = rt_current->rnext; (rt_current->rnext)->rprev = rt_current->rprev;}#define TASK_TO_SCHEDULE() \ do { prio = (new_task = rt_linux_task.rnext)->priority; } while(0);static inline void enq_timed_task(RT_TASK *timed_task){ RT_TASK *task; task = rt_linux_task.tnext; while (timed_task->resume_time > task->resume_time) { task = task->tnext; } task->tprev = (timed_task->tprev = task->tprev)->tnext = timed_task; timed_task->tnext = task;}static inline void wake_up_timed_tasks(void){ RT_TASK *task; task = rt_linux_task.tnext; while (task->resume_time <= rt_time_h) { if ((task->state &= ~(DELAYED | SEMAPHORE | RECEIVE | SEND | RPC | RETURN | MBXSUSP)) == READY) { if (task->policy < 0) { enq_ready_edf_task(task); } else { enq_ready_task(task); } } task = task->tnext; } rt_linux_task.tnext = task; task->tprev = &rt_linux_task;}static inline void rem_timed_task(RT_TASK *task){ if ((task->state & DELAYED)) { (task->tprev)->tnext = task->tnext; (task->tnext)->tprev = task->tprev; }}static void rt_startup(void(*rt_thread)(int), int data){ hard_sti(); rt_thread(data); rt_task_delete(rt_current);}int rt_task_init(RT_TASK *task, void (*rt_thread)(int), int data, int stack_size, int priority, int uses_fpu, void(*signal)(void)){ int *st, i; unsigned long flags; if (task->magic == RT_TASK_MAGIC || priority < 0) { return -EINVAL; }// If the task struct is unaligned, we'll get problems later if ((unsigned long)task & 0xf){ return -EFAULT; }#ifndef CONFIG_RTAI_FPU_SUPPORT if (uses_fpu) { return -EINVAL; }#endif if (!(st = (int *)sched_malloc(stack_size))) { return -ENOMEM; } if (wdog_task && wdog_task != task && priority == RT_HIGHEST_PRIORITY) { rt_printk("Highest priority reserved for RTAI watchdog\n"); return -EBUSY; } memset(task, 0, sizeof(*task)); task->bstack = task->stack = (int *)(((unsigned long)st + stack_size - 0x10) & ~0xF); task->stack[0] = 0; task->uses_fpu = uses_fpu ? 1 : 0; *(task->stack_bottom = st) = 0; task->runnable_on_cpus = 1; task->lnxtsk = 0; task->magic = RT_TASK_MAGIC; task->policy = 0; task->suspdepth = 1; task->state = (SUSPENDED | READY); task->owndres = 0; task->priority = task->base_priority = priority; task->prio_passed_to = 0; task->period = 0; task->resume_time = RT_TIME_END; task->queue.prev = &(task->queue); task->queue.next = &(task->queue); task->queue.task = task; task->msg_queue.prev = &(task->msg_queue); task->msg_queue.next = &(task->msg_queue); task->msg_queue.task = task; task->msg = 0; task->ret_queue.prev = &(task->ret_queue); task->ret_queue.next = &(task->ret_queue); task->ret_queue.task = NOTHING; task->tprev = task->tnext = task->rprev = task->rnext = task; task->blocked_on = NOTHING; task->signal = signal; for (i = 0; i < RTAI_NR_TRAPS; i++) { task->task_trap_handler[i] = NULL; } task->tick_queue = NOTHING; task->trap_handler_data = NOTHING; task->resync_frame = 0; task->ExitHook = 0; task->tid = rt_next_tid++; TRACE_RTAI_TASK(TRACE_RTAI_EV_TASK_INIT, task->tid, (uint32_t)rt_thread, priority); init_arch_stack(); hard_save_flags_and_cli(flags); init_fp_env(); rt_linux_task.prev->next = task; task->prev = rt_linux_task.prev; task->next = 0; rt_linux_task.prev = task; hard_restore_flags(flags); return 0;}int rt_task_init_cpuid(RT_TASK *task, void (*rt_thread)(int), int data, int stack_size, int priority, int uses_fpu, void(*signal)(void), unsigned int cpuid){ return rt_task_init(task, rt_thread, data, stack_size, priority, uses_fpu, signal);}void rt_set_runnable_on_cpus(RT_TASK *task, unsigned int runnable_on_cpus) { }void rt_set_runnable_on_cpuid(RT_TASK *task, unsigned int cpuid) { }int rt_check_current_stack(void){ char *sp; if (rt_current != &rt_linux_task) { sp = get_stack_pointer(); return (sp - (char *)(rt_current->stack_bottom)); } else { return -0x7FFFFFFF; }}void rt_set_sched_policy(RT_TASK *task, int policy, int rr_quantum_ns){ if ((task->policy = policy ? 1 : 0)) { task->rr_quantum = nano2count(rr_quantum_ns); if ((task->rr_quantum & 0xF0000000) || !task->rr_quantum) { task->rr_quantum = rt_times.linux_tick; } task->rr_remaining = task->rr_quantum; task->yield_time = 0; }}#ifdef ALLOW_RR#define RR_YIELD() \if (rt_current->policy > 0) { \ rt_current->rr_remaining = rt_current->yield_time - rt_times.tick_time; \ if (rt_current->rr_remaining <= 0) { \ rt_current->rr_remaining = rt_current->rr_quantum; \ if (rt_current->state == READY) { \ RT_TASK *task; \ task = rt_current->rnext; \ while (rt_current->priority == task->priority) { \ task = task->rnext; \ } \ if (task != rt_current->rnext) { \ (rt_current->rprev)->rnext = rt_current->rnext; \ (rt_current->rnext)->rprev = rt_current->rprev; \ task->rprev = (rt_current->rprev = task->rprev)->rnext = rt_current; \ rt_current->rnext = task; \ } \ } \ } \}#define RR_SETYT() \ if (new_task->policy > 0) { \ new_task->yield_time = rt_time_h + new_task->rr_remaining; \ }#define RR_SPREMP() \ if (new_task->policy > 0) { \ preempt = 1; \ if (new_task->yield_time < intr_time) { \ intr_time = new_task->yield_time; \ } \ } else { \ preempt = 0; \ }#define RR_TPREMP() \ if (new_task->policy > 0) { \ preempt = 1; \ if (new_task->yield_time < rt_times.intr_time) { \ rt_times.intr_time = new_task->yield_time; \ } \ } else { \ preempt = preempt_always || prio == RT_LINUX_PRIORITY; \ }#else#define RR_YIELD()#define RR_SETYT()#define RR_SPREMP() \do { preempt = 0; } while (0);#define RR_TPREMP() \do { preempt = preempt_always || prio == RT_LINUX_PRIORITY; } while (0);#endif#define ANTICIPATEstatic void rt_schedule(void){ RT_TASK *task, *new_task; RTIME intr_time, now; int prio, delay, preempt; prio = RT_LINUX_PRIORITY; task = new_task = &rt_linux_task; RR_YIELD(); if (oneshot_running) {#ifdef ANTICIPATE rt_time_h = rdtsc() + rt_half_tick; wake_up_timed_tasks();#endif TASK_TO_SCHEDULE(); RR_SETYT(); intr_time = shot_fired ? rt_times.intr_time : rt_times.intr_time + rt_times.linux_tick; RR_SPREMP(); task = &rt_linux_task; while ((task = task->tnext) != &rt_linux_task) { if (task->priority <= prio && task->resume_time < intr_time) { intr_time = task->resume_time; preempt = 1; break; } } if (preempt || (!shot_fired && prio == RT_LINUX_PRIORITY)) { shot_fired = 1; if (preempt) { rt_times.intr_time = intr_time; } delay = (int)(rt_times.intr_time - (now = rdtsc())) - tuned.latency; if (delay >= tuned.setup_time_TIMER_CPUNIT) { delay = imuldiv(delay, TIMER_FREQ, tuned.cpu_freq); } else { delay = tuned.setup_time_TIMER_UNIT; rt_times.intr_time = now + (tuned.setup_time_TIMER_CPUNIT); } rt_set_timer_delay(delay); } } else { TASK_TO_SCHEDULE(); RR_SETYT(); } if (new_task != rt_current) { if (rt_current == &rt_linux_task) { rt_switch_to_real_time(0); save_cr0_and_clts(linux_cr0); } if (new_task->uses_fpu) { enable_fpu(); if (new_task != fpu_task) { save_fpenv(fpu_task->fpu_reg); fpu_task = new_task; restore_fpenv(fpu_task->fpu_reg); } } if (new_task == &rt_linux_task) { rt_switch_to_linux(0); restore_cr0(linux_cr0); } TRACE_RTAI_SCHED_CHANGE(rt_current->tid, new_task->tid, rt_current->state); rt_switch_to(new_task); if (rt_current->signal) { (*rt_current->signal)(); } } return;}int rt_get_prio(RT_TASK *task){ if (task->magic != RT_TASK_MAGIC) { return -EINVAL; } return task->base_priority;}int rt_get_inher_prio(RT_TASK *task){ if (task->magic != RT_TASK_MAGIC) { return -EINVAL; } return task->base_priority;}void rt_spv_RMS(int cpuid){ RT_TASK *task; int prio; prio = 0; task = &rt_linux_task; while ((task = task->next)) { RT_TASK *task, *htask; RTIME period; htask = 0; task = &rt_linux_task; period = RT_TIME_END; while ((task = task->next)) { if (task->priority >= 0 && task->policy >= 0 && task->period && task->period < period) { period = (htask = task)->period; } }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -