⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sched_mup.c

📁 rtai-3.1-test3的源代码(Real-Time Application Interface )
💻 C
📖 第 1 页 / 共 3 页
字号:
			if (preempt) {				rt_times.intr_time = intr_time;			}			delay = (int)(rt_times.intr_time - (now = rdtsc())) - tuned.latency;			if (delay >= tuned.setup_time_TIMER_CPUNIT) {				delay = imuldiv(delay, TIMER_FREQ, tuned.cpu_freq);			} else {				delay = tuned.setup_time_TIMER_UNIT;				rt_times.intr_time = now + (tuned.setup_time_TIMER_CPUNIT);			}			rt_set_timer_delay(delay);		}	} else {		TASK_TO_SCHEDULE();		RR_SETYT();	}	sched_release_global_lock(cpuid);	if (new_task != rt_current) {		if (rt_current == &rt_linux_task) {			rt_switch_to_real_time(cpuid);			save_cr0_and_clts(linux_cr0);		}		if (new_task->uses_fpu) {			enable_fpu();			if (new_task != fpu_task) {				save_fpenv(fpu_task->fpu_reg);				fpu_task = new_task;				restore_fpenv(fpu_task->fpu_reg);			}		}		KEXECTIME();		if (new_task == &rt_linux_task) {			restore_cr0(linux_cr0);			rt_switch_to_linux(cpuid);			/* From now on, the Linux stage is re-enabled,			   but not sync'ed until we have actually			   switched to the Linux task, so that we			   don't end up running the Linux IRQ handlers			   on behalf of a non-Linux stack			   context... */		}		rt_exchange_tasks(rt_smp_current[cpuid], new_task);		if (rt_current->signal) {			(*rt_current->signal)();		}	}}void rt_spv_RMS(int cpuid){	RT_TASK *task;	int prio;	if (cpuid < 0 || cpuid >= smp_num_cpus) {		cpuid = hard_cpu_id();	}	prio = 0;	task = &rt_linux_task;	while ((task = task->next)) {		RT_TASK *task, *htask;		RTIME period;		htask = 0;		task = &rt_linux_task;		period = RT_TIME_END;		while ((task = task->next)) {			if (task->priority >= 0 && task->policy >= 0 && task->period && task->period < period) {				period = (htask = task)->period;			}		}		if (htask) {			htask->priority = -1;			htask->base_priority = prio++;		} else {			goto ret;		}	}ret:	task = &rt_linux_task;	while ((task = task->next)) {		if (task->priority < 0) {			task->priority = task->base_priority;		}	}	return;}void rt_sched_lock(void){	DECLARE_RT_CURRENT;	unsigned long flags;	flags = rt_global_save_flags_and_cli();	ASSIGN_RT_CURRENT;	if (rt_current->priority >= 0) {		rt_current->sched_lock_priority = rt_current->priority;		sched_rqsted[cpuid] = rt_current->priority = -1;	} else {		rt_current->priority--;	}	rt_global_restore_flags(flags);}void rt_sched_unlock(void){	DECLARE_RT_CURRENT;	unsigned long flags;	flags = rt_global_save_flags_and_cli();	ASSIGN_RT_CURRENT;	if (rt_current->priority < 0 && !(++rt_current->priority)) {		if ((rt_current->priority = rt_current->sched_lock_priority) != RT_SCHED_LINUX_PRIORITY) {			(rt_current->rprev)->rnext = rt_current->rnext;			(rt_current->rnext)->rprev = rt_current->rprev;			enq_ready_task(rt_current);		}		if (sched_rqsted[cpuid] > 0) {			rt_schedule();		}	}	rt_global_restore_flags(flags);}int rt_task_delete(RT_TASK *task){	DECLARE_RT_CURRENT;	unsigned long flags;	QUEUE *q;	if (task->magic != RT_TASK_MAGIC || task->priority == RT_SCHED_LINUX_PRIORITY) {		return -EINVAL;	}	flags = rt_global_save_flags_and_cli();	ASSIGN_RT_CURRENT;	if (!(task->owndres & SEMHLF) || task == rt_current || rt_current->priority == RT_SCHED_LINUX_PRIORITY) {		call_exit_handlers(task);		rem_timed_task(task);		if (task->blocked_on) {			(task->queue.prev)->next = task->queue.next;			(task->queue.next)->prev = task->queue.prev;			if (task->state & RT_SCHED_SEMAPHORE) {				((SEM *)(task->blocked_on))->count++;				if (((SEM *)(task->blocked_on))->type && ((SEM *)(task->blocked_on))->count > 1) {					((SEM *)(task->blocked_on))->count = 1;				}			}		}		q = &(task->msg_queue);		while ((q = q->next) != &(task->msg_queue)) {			rem_timed_task(q->task);			if ((q->task)->state != RT_SCHED_READY && ((q->task)->state &= ~(RT_SCHED_SEND | RT_SCHED_RPC | RT_SCHED_DELAYED)) == RT_SCHED_READY) {				enq_ready_task(q->task);			}       			(q->task)->blocked_on = 0;		}                       q = &(task->ret_queue);                while ((q = q->next) != &(task->ret_queue)) {			rem_timed_task(q->task);                       	if ((q->task)->state != RT_SCHED_READY && ((q->task)->state &= ~(RT_SCHED_RETURN | RT_SCHED_DELAYED)) == RT_SCHED_READY) {				enq_ready_task(q->task);			}       			(q->task)->blocked_on = 0;               	}		if (!((task->prev)->next = task->next)) {			rt_smp_linux_task[task->runnable_on_cpus].prev = task->prev;		} else {			(task->next)->prev = task->prev;		}		if (rt_smp_fpu_task[task->runnable_on_cpus] == task) {			rt_smp_fpu_task[task->runnable_on_cpus] = rt_smp_linux_task + task->runnable_on_cpus;;		}		frstk_srq.mp[frstk_srq.in] = task->stack_bottom;		frstk_srq.in = (frstk_srq.in + 1) & (MAX_FRESTK_SRQ - 1);		task->magic = 0;		rt_pend_linux_srq(frstk_srq.srq);		rem_ready_task(task);		task->state = 0;		if (task == rt_current) {			rt_schedule();		}	} else {		task->suspdepth = -0x7FFFFFFF;	}	rt_global_restore_flags(flags);	return 0;}int rt_get_timer_cpu(void){	return 1;}static void rt_timer_handler(void){	DECLARE_RT_CURRENT;	RTIME now;	RT_TASK *task, *new_task;	int prio, delay, preempt; 	ASSIGN_RT_CURRENT;	sched_rqsted[cpuid] = 1;	task = new_task = &rt_linux_task;	prio = RT_SCHED_LINUX_PRIORITY;#ifdef CONFIG_X86_REMOTE_DEBUG	if (oneshot_timer) {	// Resync after possibly hitting a breakpoint	    	rt_times.intr_time = rdtsc();	}#endif	rt_times.tick_time = rt_times.intr_time;	rt_time_h = rt_times.tick_time + rt_half_tick;	if (rt_times.tick_time >= rt_times.linux_time) {		rt_times.linux_time += rt_times.linux_tick;		update_linux_timer();	}	sched_get_global_lock(cpuid);	wake_up_timed_tasks(cpuid);	RR_YIELD();	TASK_TO_SCHEDULE();	RR_SETYT();	if (oneshot_timer) {		rt_times.intr_time = rt_times.linux_time > rt_times.tick_time ?		rt_times.linux_time : rt_times.tick_time + rt_times.linux_tick;		RR_TPREMP();		task = &rt_linux_task;		while ((task = task->tnext) != &rt_linux_task) {			if (task->priority <= prio && task->resume_time < rt_times.intr_time) {				rt_times.intr_time = task->resume_time;				preempt = 1;				break;			}		}		if ((shot_fired = preempt)) {			delay = (int)(rt_times.intr_time - (now = rdtsc())) - tuned.latency;			if (delay >= tuned.setup_time_TIMER_CPUNIT) {				delay = imuldiv(delay, TIMER_FREQ, tuned.cpu_freq);			} else {				delay = tuned.setup_time_TIMER_UNIT;				rt_times.intr_time = now + (tuned.setup_time_TIMER_CPUNIT);			}			rt_set_timer_delay(delay);		}	} else {		rt_times.intr_time += rt_times.periodic_tick;                rt_set_timer_delay(0);	}	sched_release_global_lock(cpuid);	if (new_task != rt_current) {		if (rt_current == &rt_linux_task) {			rt_switch_to_real_time(cpuid);			save_cr0_and_clts(linux_cr0);		}		if (new_task->uses_fpu) {			enable_fpu();			if (new_task != fpu_task) {				save_fpenv(fpu_task->fpu_reg);				fpu_task = new_task;				restore_fpenv(fpu_task->fpu_reg);			}		}		KEXECTIME();		rt_exchange_tasks(rt_smp_current[cpuid], new_task);		if (rt_current->signal) {			(*rt_current->signal)();		}	}	return;}static void recover_jiffies(int irq, void *dev_id, struct pt_regs *regs){    	rt_global_cli();	if (linux_times->tick_time >= linux_times->linux_time) {		linux_times->linux_time += linux_times->linux_tick;		rt_pend_linux_irq(TIMER_8254_IRQ);	}	rt_global_sti();	BROADCAST_TO_LOCAL_TIMERS();} int rt_is_hard_timer_running(void){	int cpuid, running;	for (running = cpuid = 0; cpuid < smp_num_cpus; cpuid++) {		if (rt_time_h) {			set_bit(cpuid, &running);		}	}	return running;}void rt_set_periodic_mode(void) { 	int cpuid;	stop_rt_timer();	for (cpuid = 0; cpuid < NR_RT_CPUS; cpuid++) {		oneshot_timer = oneshot_running = 0;	}}void rt_set_oneshot_mode(void){ 	int cpuid;	stop_rt_timer();	for (cpuid = 0; cpuid < NR_RT_CPUS; cpuid++) {		oneshot_timer = 1;	}}#ifdef __USE_APIC__void start_rt_apic_timers(struct apic_timer_setup_data *setup_data, unsigned int rcvr_jiffies_cpuid){	unsigned long flags, cpuid;	rt_request_apic_timers(rt_timer_handler, setup_data);	flags = rt_global_save_flags_and_cli();	for (cpuid = 0; cpuid < NR_RT_CPUS; cpuid++) {		if (setup_data[cpuid].mode > 0) {			oneshot_timer = oneshot_running = 0;			tuned.timers_tol[cpuid] = rt_half_tick = (rt_times.periodic_tick + 1)>>1;		} else {			oneshot_timer = oneshot_running = 1;			tuned.timers_tol[cpuid] = rt_half_tick = (tuned.latency + 1)>>1;		}		rt_time_h = rt_times.tick_time + rt_half_tick;		shot_fired = 1;	}	linux_times = rt_smp_times + (rcvr_jiffies_cpuid < NR_RT_CPUS ? rcvr_jiffies_cpuid : 0);	rt_global_restore_flags(flags);	rt_free_linux_irq(TIMER_8254_IRQ, &rtai_broadcast_to_local_timers);	rt_request_linux_irq(TIMER_8254_IRQ, recover_jiffies, "rtai_jif_chk", recover_jiffies);}RTIME start_rt_timer(int period){	int cpuid;	struct apic_timer_setup_data setup_data[NR_RT_CPUS];	for (cpuid = 0; cpuid < NR_RT_CPUS; cpuid++) {		setup_data[cpuid].mode = oneshot_timer ? 0 : 1;		setup_data[cpuid].count = count2nano(period);	}	start_rt_apic_timers(setup_data, hard_cpu_id());	return period;}void stop_rt_timer(void){	unsigned long flags;	int cpuid;	rt_free_linux_irq(TIMER_8254_IRQ, recover_jiffies);	rt_free_apic_timers();	flags = rt_global_save_flags_and_cli();	for (cpuid = 0; cpuid < NR_RT_CPUS; cpuid++) {		oneshot_timer = oneshot_running = 0;	}	rt_global_restore_flags(flags);	rt_busy_sleep(10000000);}#elseRTIME start_rt_timer(int period){#define cpuid 0#undef rt_times        unsigned long flags;        flags = rt_global_save_flags_and_cli();        if (oneshot_timer) {                rt_request_timer(rt_timer_handler, 0, 0);                tuned.timers_tol[0] = rt_half_tick = (tuned.latency + 1)>>1;                oneshot_running = shot_fired = 1;        } else {                rt_request_timer(rt_timer_handler, period > LATCH? LATCH: period, 0);                tuned.timers_tol[0] = rt_half_tick = (rt_times.periodic_tick + 1)>>1;        }	rt_smp_times[cpuid].linux_tick    = rt_times.linux_tick;	rt_smp_times[cpuid].tick_time     = rt_times.tick_time;	rt_smp_times[cpuid].intr_time     = rt_times.intr_time;	rt_smp_times[cpuid].linux_time    = rt_times.linux_time;	rt_smp_times[cpuid].periodic_tick = rt_times.periodic_tick;        rt_time_h = rt_times.tick_time + rt_half_tick;	linux_times = rt_smp_times;        rt_global_restore_flags(flags);        rt_request_linux_irq(TIMER_8254_IRQ, recover_jiffies, "rtai_jif_chk", recover_jiffies);        return period;#undef cpuid#define rt_times (rt_smp_times[cpuid])}void start_rt_apic_timers(struct apic_timer_setup_data *setup_mode, unsigned int rcvr_jiffies_cpuid){	int cpuid, period;	period = 0;	for (cpuid = 0; cpuid < NR_RT_CPUS; cpuid++) {		period += setup_mode[cpuid].mode;	}	if (period == NR_RT_CPUS) {		period = 2000000000;		for (cpuid = 0; cpuid < NR_RT_CPUS; cpuid++) {			if (setup_mode[cpuid].count < period) {				period = setup_mode[cpuid].count;			}		}		start_rt_timer(nano2count(period));	} else {		rt_set_oneshot_mode();		start_rt_timer(0);	}}void stop_rt_timer(void){        unsigned long flags;        rt_free_linux_irq(TIMER_8254_IRQ, recover_jiffies);        rt_free_timer();        flags = rt_global_save_flags_and_cli();	rt_smp_oneshot_timer[0] = rt_smp_oneshot_running[0] = 0;        rt_global_restore_flags(flags);        rt_busy_sleep(10000000);}#endifRTIME start_rt_timer_cpuid(int period, int cpuid){	return start_rt_timer(period);}int rt_sched_type(void){	return RT_SCHED_MUP;}void rt_preempt_always(int yes_no){	int cpuid;	for (cpuid = 0; cpuid < NR_RT_CPUS; cpuid++) {		rt_smp_preempt_always[cpuid] = yes_no ? 1 : 0;	}}void rt_preempt_always_cpuid(int yes_no, unsigned int cpuid){	rt_smp_preempt_always[cpuid] = yes_no ? 1 : 0;}RT_TRAP_HANDLER rt_set_task_trap_handler( RT_TASK *task, unsigned int vec, RT_TRAP_HANDLER handler){	RT_TRAP_HANDLER old_handler;	if (!task || (vec >= RTAI_NR_TRAPS)) {		return (RT_TRAP_HANDLER) -EINVAL;	}	old_handler = task->task_trap_handler[vec];	task->task_trap_handler[vec] = handler;	return old_handler;}int rt_trap_handler(int vec, int signo, struct pt_regs *regs, void *dummy_data){	DECLARE_RT_CURRENT;	ASSIGN_RT_CURRENT;	if (!rt_current) return 0;	if (rt_current->task_trap_handler[vec]) {		return rt_current->task_trap_handler[vec]( vec, 							   signo,							   regs, 							   rt_current);	}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -