📄 ch03.7.htm
字号:
, disconnecting wire <CODE>c </CODE>from the <B>and</B> gate. When wire <CODE>c</CODE> is no longer connected to the <B>and</B> gate, value of wire <CODE>c</CODE> changes to <CODE>HiZ</CODE> . The value of wire <CODE>b</CODE> remains <CODE>1</CODE> so wire <CODE>c</CODE> remains connected to trireg net <CODE>d</CODE> through the <CODE>nmos2</CODE> switch. The<CODE> HiZ</CODE> value does not propagate from wire <CODE>c</CODE> into trireg net <CODE>d</CODE> . Instead, trireg net <CODE>d</CODE> enters the capacitive state, storing its last driven value of <CODE>1</CODE> . It stores the <CODE>1</CODE> with a <B>medium</B> strength.</OL><P><P CLASS="SubSubSect"><A NAME="pgfId=508"></A>Capacitive networks</P><P><P CLASS="Body"><A NAME="pgfId=385"></A>A capacitive network is a connectionbetween two or more trireg nets. In a capacitive network whose trireg netsare in the capacitive state, logic and strength values can propagate betweentrireg nets.</P><P><P CLASS="Body"><A NAME="pgfId=504"></A>Examples:</P><P><P CLASS="Body"><A NAME="pgfId=505"></A>Figure 3-2 shows a capacitivenetwork in which the logic value of some trireg nets change the logic valueof other trireg nets of equal or smaller size.</P><P><P CLASS="Body"><A NAME="pgfId=387"></A> </P><P><IMG SRC="ch03-2.gif" WIDTH="376" HEIGHT="436" NATURALSIZEFLAG="3" ALIGN="BOTTOM"> <P CLASS="FigCapBody"><A NAME="pgfId=455"></A>Figure 3-2:Simulation results of a capacitive network</P><P><P CLASS="Body"><A NAME="pgfId=512"></A>In Figure 3-2, capacitivestrength of <CODE>trireg_la</CODE> net is <CODE>large</CODE> , <CODE>trireg_me1</CODE>and <CODE>trireg_me2</CODE> are <CODE>medium</CODE> , and <CODE>trireg_sm</CODE>is <CODE>small</CODE> . Simulation reports the following sequence of events:</P><OL> <P><P CLASS="NumberedLista"><A NAME="pgfId=513"></A>a) At simulation time 0, wire <CODE>a</CODE> and wire <CODE>b</CODE> have a value of <CODE>1</CODE> .<CODE> </CODE>The wire <CODE>c</CODE> drives a value of <CODE>1</CODE> into <CODE>trireg_la</CODE> and <CODE>trireg_sm</CODE> , wire <CODE>d</CODE> drives a value of 1 into <CODE>trireg_me1</CODE> and <CODE>trireg_me2</CODE> . <P><P CLASS="NumberedListb"><A NAME="pgfId=514"></A>b) At simulation time 10, value of wire <CODE>b</CODE> changes to <CODE>0</CODE> , disconnecting <CODE>trireg_sm</CODE> and <CODE>trireg_me2</CODE> from their drivers. These trireg nets enter the capacitive state and store the value <CODE>1</CODE> , their last driven value. <P><P CLASS="NumberedListb"><A NAME="pgfId=515"></A>c) At simulation time 20, wire <CODE>c</CODE> drives a value of <CODE>0</CODE> into <CODE>trireg_la</CODE> . <P><P CLASS="NumberedListb"><A NAME="pgfId=516"></A>d) At simulation time 30, wire <CODE>d</CODE> drives a value of <CODE>0</CODE> into <CODE>trireg_me1</CODE> . <P><P CLASS="NumberedListb"><A NAME="pgfId=517"></A>e) At simulation time 40, value of wire <CODE>a</CODE> changes to <CODE>0</CODE> , disconnecting <CODE>trireg_la</CODE> and <CODE>trireg_me1</CODE> from their drivers. These trireg nets enter the capacitive state and store the value <CODE>0</CODE> . <P><P CLASS="NumberedListb"><A NAME="pgfId=518"></A>f) At simulation time 50, the value of wire <CODE>b</CODE> changes to <CODE>1</CODE> . <BR> <BR> This change of value in wire <CODE>b</CODE> connects <CODE>trireg_sm</CODE> to <CODE>trireg_la</CODE> ; these trireg nets have different sizes and stored different values. This connection causes the smaller trireg net to store the larger trireg net's value and <CODE>trireg_sm</CODE> now stores a value of <CODE>0</CODE> .<BR> <BR> This change of value in wire <CODE>b</CODE> also connects <CODE>trireg_me1</CODE> to <CODE>trireg_me2</CODE> ; these trireg nets have the same size and stored different values. The connection causes both <CODE>trireg_me1</CODE> and <CODE>trireg_me2</CODE> to change value to <CODE>x</CODE> .</OL><P><P CLASS="Body"><A NAME="pgfId=506"></A>In a capacitive network, chargestrengths propagate from a larger trireg net to a smaller trireg net. Figure 3-3shows a capacitive network and its simulation results.</P><P><P CLASS="Body"><A NAME="pgfId=380"></A> </P><P><IMG SRC="ch03-3.gif" WIDTH="376" HEIGHT="326" NATURALSIZEFLAG="3" ALIGN="BOTTOM"> <P CLASS="FigCapBody"><A NAME="pgfId=651"></A>Figure 3-3:Simulation results of charge sharing</P><P><P CLASS="Body"><A NAME="pgfId=652"></A>In Figure 3-3, capacitivestrength of <CODE>trireg_la</CODE> is <B>large</B> and capacitive strengthof <CODE>trireg_sm</CODE> is <B>small</B>. Simulation reports the followingresults:</P><OL> <P><P CLASS="NumberedLista"><A NAME="pgfId=523"></A>a) At simulation time 0, the value of wire <CODE>a</CODE> , wire <CODE>b</CODE> , and wire <CODE>c </CODE>is <CODE>1</CODE> and wire <CODE>a</CODE> drives a <CODE>strong 1</CODE> into <CODE>trireg_la</CODE> and <CODE>trireg_sm</CODE> . <P><P CLASS="NumberedListb"><A NAME="pgfId=524"></A>b) At simulation time 10, value of wire <CODE>b</CODE> changes to <CODE>0</CODE> , disconnecting <CODE>trireg_la</CODE> and <CODE>trireg_sm</CODE> from wire <CODE>a</CODE> . The <CODE>trireg_la</CODE> and <CODE>trireg_sm</CODE> nets enter the capacitive state. Both trireg nets share the<CODE> </CODE><B>large</B> charge of <CODE>trireg_la</CODE> because they remain connected through <CODE>tranif1_2</CODE> . <P><P CLASS="NumberedListb"><A NAME="pgfId=525"></A>c) At simulation time 20, value of wire <CODE>c</CODE> changes to <CODE>0</CODE> , disconnecting <CODE>trireg_sm</CODE> from <CODE>trireg_la</CODE> . The <CODE>trireg_sm</CODE> no longer shares <B>large</B> charge of <CODE>trireg_la</CODE> and now stores a <B>small</B> charge. <P><P CLASS="NumberedListb"><A NAME="pgfId=526"></A>d) At simulation time 30, value of wire <CODE>c</CODE> changes to <CODE>1</CODE> , connecting the two trireg nets. These trireg nets now share the same charge. <P><P CLASS="NumberedListb"><A NAME="pgfId=458"></A>e) At simulation time 40, value of wire <CODE>c</CODE> changes again to <CODE>0</CODE> , disconnecting <CODE>trireg_sm</CODE> from <CODE>trireg_la</CODE> . Once again, <CODE>trireg_sm</CODE> no longer shares <B>large </B>charge of <CODE>trireg_la</CODE> and now stores a <B>small</B> charge.</OL><P><P CLASS="SubSubSect"><A NAME="pgfId=653"></A>Ideal capacitive stateand charge decay</P><P><P CLASS="Body"><A NAME="pgfId=529"></A>A <I>trireg</I> net can retainits value indefinitely or its charge can decay over time. The simulationtime of charge decay is specified in the trireg net's delay specification.See section 7.15.2 for charge decay explanation.</P><P><P CLASS="SubSection"><A NAME="pgfId=531"></A>Tri0 and tri1 nets</P><P><P CLASS="Body"><A NAME="pgfId=430"></A>The <I>tri0</I> and <I>tri1</I>nets model nets with resistive <I>pulldown</I> and resistive <I>pullup</I>devices on them. When no driver drives a tri0 net, its value is <CODE>0</CODE>. When no driver drives a tri1 net, its value is <CODE>1</CODE> . The strengthof this value is <B>pull</B>. See Section 7 for a description of strengthmodeling.</P><P><P CLASS="Body"><A NAME="pgfId=371"></A>A truth table for <CODE>tri0</CODE>is shown in Table 3-5. A truth table for <CODE>tri1</CODE> is shownin Table 3-6.</P><P><TABLE BORDER="1" CELLSPACING="2" CELLPADDING="0"><CAPTION ALIGN="TOP"><P CLASS="TableTitle"><A NAME="pgfId=641"></A>Table 3-5: Truth tablefor tri0 net</CAPTION><TR><TH><P CLASS="CellHeading"><A NAME="pgfId=646"></A><B>tri0</B></TH><TH><P CLASS="CellHeading"><A NAME="pgfId=647"></A>0</TH><TH><P CLASS="CellHeading"><A NAME="pgfId=648"></A>1</TH><TH><P CLASS="CellHeading"><A NAME="pgfId=649"></A>x</TH><TH><P CLASS="CellHeading"><A NAME="pgfId=650"></A>z</TH></TR><TR><TD><P CLASS="CellBody"><A NAME="pgfId=698"></A>0</TD><TD><P CLASS="CellBody"><A NAME="pgfId=699"></A>0</TD><TD><P CLASS="CellBody"><A NAME="pgfId=700"></A>x</TD><TD><P CLASS="CellBody"><A NAME="pgfId=701"></A>x</TD><TD><P CLASS="CellBody"><A NAME="pgfId=702"></A>0</TD></TR><TR><TD><P CLASS="CellBody"><A NAME="pgfId=703"></A>1</TD><TD><P CLASS="CellBody"><A NAME="pgfId=704"></A>x</TD><TD><P CLASS="CellBody"><A NAME="pgfId=705"></A>1</TD><TD><P CLASS="CellBody"><A NAME="pgfId=706"></A>x</TD><TD><P CLASS="CellBody"><A NAME="pgfId=707"></A>1</TD></TR><TR><TD><P CLASS="CellBody"><A NAME="pgfId=708"></A>x</TD><TD><P CLASS="CellBody"><A NAME="pgfId=709"></A>x</TD><TD><P CLASS="CellBody"><A NAME="pgfId=710"></A>x</TD><TD><P CLASS="CellBody"><A NAME="pgfId=711"></A>x</TD><TD><P CLASS="CellBody"><A NAME="pgfId=712"></A>x</TD></TR><TR><TD><P CLASS="CellBody"><A NAME="pgfId=713"></A>z</TD><TD><P CLASS="CellBody"><A NAME="pgfId=714"></A>0</TD><TD><P CLASS="CellBody"><A NAME="pgfId=715"></A>1</TD><TD><P CLASS="CellBody"><A NAME="pgfId=716"></A>x</TD><TD><P CLASS="CellBody"><A NAME="pgfId=717"></A>0</TD></TR></TABLE> <TABLE BORDER="1" CELLSPACING="2" CELLPADDING="0"><CAPTION ALIGN="TOP"><P CLASS="TableTitle"><A NAME="pgfId=747"></A>Table 3-6: Truth tablefor tri1 net</CAPTION><TR><TH><P CLASS="CellHeading"><A NAME="pgfId=718"></A><B>tri1</B></TH><TH><P CLASS="CellHeading"><A NAME="pgfId=719"></A>0</TH><TH><P CLASS="CellHeading"><A NAME="pgfId=720"></A>1</TH><TH><P CLASS="CellHeading"><A NAME="pgfId=721"></A>x</TH><TH><P CLASS="CellHeading"><A NAME="pgfId=722"></A>z</TH></TR><TR><TD><P CLASS="CellBody"><A NAME="pgfId=723"></A>0</TD><TD><P CLASS="CellBody"><A NAME="pgfId=724"></A>0</TD><TD><P CLASS="CellBody"><A NAME="pgfId=725"></A>x</TD><TD><P CLASS="CellBody"><A NAME="pgfId=726"></A>x</TD><TD><P CLASS="CellBody"><A NAME="pgfId=727"></A>0</TD></TR><TR><TD><P CLASS="CellBody"><A NAME="pgfId=728"></A>1</TD><TD><P CLASS="CellBody"><A NAME="pgfId=729"></A>x</TD><TD><P CLASS="CellBody"><A NAME="pgfId=730"></A>1</TD><TD><P CLASS="CellBody"><A NAME="pgfId=731"></A>x</TD><TD><P CLASS="CellBody"><A NAME="pgfId=732"></A>1</TD></TR><TR><TD><P CLASS="CellBody"><A NAME="pgfId=733"></A>x</TD><TD><P CLASS="CellBody"><A NAME="pgfId=734"></A>x</TD><TD><P CLASS="CellBody"><A NAME="pgfId=735"></A>x</TD><TD><P CLASS="CellBody"><A NAME="pgfId=736"></A>x</TD><TD><P CLASS="CellBody"><A NAME="pgfId=737"></A>x</TD></TR><TR><TD><P CLASS="CellBody"><A NAME="pgfId=738"></A>z</TD><TD><P CLASS="CellBody"><A NAME="pgfId=739"></A>0</TD><TD><P CLASS="CellBody"><A NAME="pgfId=740"></A>1</TD><TD><P CLASS="CellBody"><A NAME="pgfId=741"></A>x</TD><TD><P CLASS="CellBody"><A NAME="pgfId=742"></A>1</TD></TR></TABLE><P CLASS="SubSection"><A NAME="pgfId=534"></A>Supply nets</P><P><P CLASS="Body"><A NAME="pgfId=535"></A>The <I>supply0</I> and <I>supply1</I>nets may be used to model the power supplies in a circuit. These nets shallhave <B>supply</B> strengths.</P><P><HR ALIGN=LEFT></P><P><A HREF="ch03.htm">Chapter start</A> <A HREF="ch03.6.htm">Previous page</A> <A HREF="ch03.8.htm">Next page</A></BODY></HTML>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -