📄 mgcbezierrectangle2g.cpp
字号:
// Magic Software, Inc.
// http://www.magic-software.com
// Copyright (c) 2000, All Rights Reserved
//
// Source code from Magic Software is supplied under the terms of a license
// agreement and may not be copied or disclosed except in accordance with the
// terms of that agreement. The various license agreements may be found at
// the Magic Software web site. This file is subject to the license
//
// FREE SOURCE CODE
// http://www.magic-software.com/License/free.pdf
#include "MgcBezierRectangle2G.h"
//----------------------------------------------------------------------------
MgcBezierRectangle2G::MgcBezierRectangle2G (MgcVector3* akCtrlPoint)
:
MgcBezierRectangleG(2,akCtrlPoint)
{
}
//----------------------------------------------------------------------------
MgcVector3 MgcBezierRectangle2G::GetPosition (MgcReal fU, MgcReal fV) const
{
MgcReal fOmU = 1.0 - fU;
MgcReal afUCoeff[3] =
{
fOmU*fOmU,
2.0*fOmU*fU,
fU*fU
};
MgcReal fOmV = 1.0 - fV;
MgcReal afVCoeff[3] =
{
fOmV*fOmV,
2.0*fOmV*fV,
fV*fV
};
MgcVector3 kResult = MgcVector3::ZERO;
for (int iY = 0; iY < 3; iY++)
{
for (int iX = 0; iX < 3; iX++)
kResult += afUCoeff[iX]*afVCoeff[iY]*m_akCtrlPoint[iX + 3*iY];
}
return kResult;
}
//----------------------------------------------------------------------------
MgcVector3 MgcBezierRectangle2G::GetDerivativeU (MgcReal fU, MgcReal fV) const
{
MgcReal fOmU = 1.0 - fU;
MgcReal afUCoeff[3] =
{
-2.0*fOmU,
2.0*(fOmU - fU),
2.0*fU
};
MgcReal fOmV = 1.0 - fV;
MgcReal afVCoeff[3] =
{
fOmV*fOmV,
2.0*fOmV*fV,
fV*fV
};
MgcVector3 kResult = MgcVector3::ZERO;
for (int iY = 0; iY < 3; iY++)
{
for (int iX = 0; iX < 3; iX++)
kResult += afUCoeff[iX]*afVCoeff[iY]*m_akCtrlPoint[iX + 3*iY];
}
return kResult;
}
//----------------------------------------------------------------------------
MgcVector3 MgcBezierRectangle2G::GetDerivativeV (MgcReal fU, MgcReal fV) const
{
MgcReal fOmU = 1.0 - fU;
MgcReal afUCoeff[3] =
{
fOmU*fOmU,
2.0*fOmU*fU,
fU*fU
};
MgcReal fOmV = 1.0 - fV;
MgcReal afVCoeff[3] =
{
-2.0*fOmV,
2.0*(fOmV - fV),
2.0*fV
};
MgcVector3 kResult = MgcVector3::ZERO;
for (int iY = 0; iY < 3; iY++)
{
for (int iX = 0; iX < 3; iX++)
kResult += afUCoeff[iX]*afVCoeff[iY]*m_akCtrlPoint[iX + 3*iY];
}
return kResult;
}
//----------------------------------------------------------------------------
MgcVector3 MgcBezierRectangle2G::GetDerivativeUU (MgcReal fU,
MgcReal fV) const
{
MgcReal afUCoeff[3] =
{
2.0,
-4.0,
2.0
};
MgcReal fOmV = 1.0 - fV;
MgcReal afVCoeff[3] =
{
fOmV*fOmV,
2.0*fOmV*fV,
fV*fV
};
MgcVector3 kResult = MgcVector3::ZERO;
for (int iY = 0; iY < 3; iY++)
{
for (int iX = 0; iX < 3; iX++)
kResult += afUCoeff[iX]*afVCoeff[iY]*m_akCtrlPoint[iX + 3*iY];
}
return kResult;
}
//----------------------------------------------------------------------------
MgcVector3 MgcBezierRectangle2G::GetDerivativeUV (MgcReal fU,
MgcReal fV) const
{
MgcReal fOmU = 1.0 - fU;
MgcReal afUCoeff[3] =
{
-2.0*fOmU,
2.0*(fOmU - fU),
2.0*fU
};
MgcReal fOmV = 1.0 - fV;
MgcReal afVCoeff[3] =
{
-2.0*fOmV,
2.0*(fOmV - fV),
2.0*fV
};
MgcVector3 kResult = MgcVector3::ZERO;
for (int iY = 0; iY < 3; iY++)
{
for (int iX = 0; iX < 3; iX++)
kResult += afUCoeff[iX]*afVCoeff[iY]*m_akCtrlPoint[iX + 3*iY];
}
return kResult;
}
//----------------------------------------------------------------------------
MgcVector3 MgcBezierRectangle2G::GetDerivativeVV (MgcReal fU,
MgcReal fV) const
{
MgcReal fOmU = 1.0 - fU;
MgcReal afUCoeff[3] =
{
fOmU*fOmU,
2.0*fOmU*fU,
fU*fU
};
MgcReal afVCoeff[3] =
{
2.0,
-4.0,
2.0
};
MgcVector3 kResult = MgcVector3::ZERO;
for (int iY = 0; iY < 3; iY++)
{
for (int iX = 0; iX < 3; iX++)
kResult += afUCoeff[iX]*afVCoeff[iY]*m_akCtrlPoint[iX + 3*iY];
}
return kResult;
}
//----------------------------------------------------------------------------
void MgcBezierRectangle2G::Tessellate (unsigned int uiLevel,
bool bWantNormals)
{
// allocate arrays and compute connectivity
Initialize(uiLevel,bWantNormals);
// indices of four corners of patch, I[u][v]
unsigned int uiTwoPowL = (1 << uiLevel);
BlockParameters kBP;
kBP.m_uiI00 = 0;
kBP.m_uiI01 = uiTwoPowL*(uiTwoPowL + 1);
kBP.m_uiI10 = uiTwoPowL;
kBP.m_uiI11 = kBP.m_uiI01 + uiTwoPowL;
// vertices for subdivision
MgcVector3* akX = m_akVertex;
akX[kBP.m_uiI00] = m_akCtrlPoint[0];
akX[kBP.m_uiI01] = m_akCtrlPoint[6];
akX[kBP.m_uiI10] = m_akCtrlPoint[2];
akX[kBP.m_uiI11] = m_akCtrlPoint[8];
// derivatives for subdivision (for normal vectors)
MgcVector3* akXu;
MgcVector3* akXv;
if ( bWantNormals )
{
akXu = new MgcVector3[m_uiVertexQuantity];
akXu[kBP.m_uiI00] = 2.0*(m_akCtrlPoint[1] - m_akCtrlPoint[0]);
akXu[kBP.m_uiI01] = 3.0*(m_akCtrlPoint[7] - m_akCtrlPoint[6]);
akXu[kBP.m_uiI10] = 3.0*(m_akCtrlPoint[2] - m_akCtrlPoint[1]);
akXu[kBP.m_uiI11] = 3.0*(m_akCtrlPoint[8] - m_akCtrlPoint[7]);
akXv = new MgcVector3[m_uiVertexQuantity];
akXv[kBP.m_uiI00] = 3.0*(m_akCtrlPoint[3] - m_akCtrlPoint[0]);
akXv[kBP.m_uiI01] = 3.0*(m_akCtrlPoint[6] - m_akCtrlPoint[3]);
akXv[kBP.m_uiI10] = 3.0*(m_akCtrlPoint[5] - m_akCtrlPoint[2]);
akXv[kBP.m_uiI11] = 3.0*(m_akCtrlPoint[8] - m_akCtrlPoint[5]);
}
else
{
akXu = 0;
akXv = 0;
}
// recursive subdivision
if ( uiLevel > 0 )
{
kBP.m_akXuu[0] = 2.0*(m_akCtrlPoint[0] - 2.0*m_akCtrlPoint[1] +
m_akCtrlPoint[2]);
kBP.m_akXuu[1] = 2.0*(m_akCtrlPoint[6] - 2.0*m_akCtrlPoint[7] +
m_akCtrlPoint[8]);
kBP.m_akXvv[0] = 2.0*(m_akCtrlPoint[0] - 2.0*m_akCtrlPoint[3] +
m_akCtrlPoint[6]);
kBP.m_akXvv[1] = 2.0*(m_akCtrlPoint[2] - 2.0*m_akCtrlPoint[5] +
m_akCtrlPoint[8]);
MgcVector3 kXuuvv = 4.0*(m_akCtrlPoint[0] + m_akCtrlPoint[2] +
m_akCtrlPoint[6] + m_akCtrlPoint[8] - 2.0*(m_akCtrlPoint[1] +
m_akCtrlPoint[3] + m_akCtrlPoint[5] + m_akCtrlPoint[7]) +
4.0*m_akCtrlPoint[4]);
if ( bWantNormals )
{
kBP.m_akXuuv[0] = 4.0*(m_akCtrlPoint[3] + m_akCtrlPoint[5] -
m_akCtrlPoint[0] - m_akCtrlPoint[2] + 2.0*(m_akCtrlPoint[1] -
m_akCtrlPoint[4]));
kBP.m_akXuuv[1] = 4.0*(m_akCtrlPoint[6] + m_akCtrlPoint[8] -
m_akCtrlPoint[3] - m_akCtrlPoint[5] + 2.0*(m_akCtrlPoint[4] -
m_akCtrlPoint[7]));
kBP.m_akXuvv[0] = 4.0*(m_akCtrlPoint[1] + m_akCtrlPoint[7] -
m_akCtrlPoint[0] - m_akCtrlPoint[6] + 2.0*(m_akCtrlPoint[3] -
m_akCtrlPoint[4]));
kBP.m_akXuvv[1] = 4.0*(m_akCtrlPoint[2] + m_akCtrlPoint[8] -
m_akCtrlPoint[1] - m_akCtrlPoint[7] + 2.0*(m_akCtrlPoint[4] -
m_akCtrlPoint[5]));
}
Subdivide(--uiLevel,0.25,akX,akXu,akXv,kXuuvv,kBP);
}
// calculate unit-length normals from derivative vectors
if ( bWantNormals )
{
for (unsigned int uiI = 0; uiI < m_uiVertexQuantity; uiI++)
m_akNormal[uiI] = akXu[uiI].UnitCross(akXv[uiI]);
delete[] akXu;
delete[] akXv;
}
}
//----------------------------------------------------------------------------
void MgcBezierRectangle2G::Subdivide (unsigned int uiLevel, MgcReal fDSqr,
MgcVector3* akX, MgcVector3* akXu, MgcVector3* akXv, MgcVector3& rkXuuvv,
BlockParameters& rkBP)
{
// subdivision indices
unsigned int uiIM0 = (rkBP.m_uiI00 + rkBP.m_uiI10) >> 1;
unsigned int uiIM1 = (rkBP.m_uiI01 + rkBP.m_uiI11) >> 1;
unsigned int uiI0M = (rkBP.m_uiI00 + rkBP.m_uiI01) >> 1;
unsigned int uiI1M = (rkBP.m_uiI10 + rkBP.m_uiI11) >> 1;
unsigned int uiIMM = (uiI0M + uiI1M) >> 1;
// vertices
// top and bottom u-edge subdivision
MgcVector3 kXvvM0 = 0.5*(rkBP.m_akXvv[0]+rkBP.m_akXvv[1]-fDSqr*rkXuuvv);
akX[uiIM0] = 0.5*(akX[rkBP.m_uiI00] + akX[rkBP.m_uiI10] -
fDSqr*rkBP.m_akXuu[0]);
akX[uiIM1] = 0.5*(akX[rkBP.m_uiI01] + akX[rkBP.m_uiI11] -
fDSqr*rkBP.m_akXuu[1]);
// left and right v-edge subdivision
MgcVector3 kXuu0M = 0.5*(rkBP.m_akXuu[0]+rkBP.m_akXuu[1]-fDSqr*rkXuuvv);
akX[uiI0M] = 0.5*(akX[rkBP.m_uiI00] + akX[rkBP.m_uiI01] -
fDSqr*rkBP.m_akXvv[0]);
akX[uiI1M] = 0.5*(akX[rkBP.m_uiI10] + akX[rkBP.m_uiI11] -
fDSqr*rkBP.m_akXvv[1]);
// center subdivision
akX[uiIMM] = 0.5*(akX[uiI0M] + akX[uiI1M] - fDSqr*kXuu0M);
// derivatives (for normal vectors)
MgcVector3 kXuuv0M, kXuvvM0;
if ( akXu )
{
// top and bottom u-edge subdivision
akXu[uiIM0] = 0.5*(akXu[rkBP.m_uiI00] + akXu[rkBP.m_uiI10]);
akXv[uiIM0] = 0.5*(akXv[rkBP.m_uiI00] + akXv[rkBP.m_uiI10] -
fDSqr*rkBP.m_akXuuv[0]);
akXu[uiIM1] = 0.5*(akXu[rkBP.m_uiI01] + akXu[rkBP.m_uiI11]);
akXv[uiIM1] = 0.5*(akXv[rkBP.m_uiI01] + akXv[rkBP.m_uiI11] -
fDSqr*rkBP.m_akXuuv[1]);
kXuvvM0 = 0.5*(rkBP.m_akXuvv[0] + rkBP.m_akXuvv[1]);
// left and right v-edge subdivision
akXu[uiI0M] = 0.5*(akXu[rkBP.m_uiI00] + akXu[rkBP.m_uiI01] -
fDSqr*rkBP.m_akXuvv[0]);
akXv[uiI0M] = 0.5*(akXv[rkBP.m_uiI00] + akXv[rkBP.m_uiI01]);
akXu[uiI1M] = 0.5*(akXu[rkBP.m_uiI10] + akXu[rkBP.m_uiI11] -
fDSqr*rkBP.m_akXuvv[1]);
akXv[uiI1M] = 0.5*(akXv[rkBP.m_uiI10] + akXv[rkBP.m_uiI11]);
kXuuv0M = 0.5*(rkBP.m_akXuuv[0] + rkBP.m_akXuuv[1]);
// center subdivision
akXu[uiIMM] = 0.5*(akXu[uiI0M] + akXu[uiI1M]);
akXv[uiIMM] = 0.5*(akXv[uiIM0] + akXv[uiIM1]);
}
// recurse on four children
if ( uiLevel > 0 )
{
uiLevel--;
fDSqr *= 0.25;
BlockParameters kSubBP;
// subblock [u0,uM]x[v0,vM]
kSubBP.m_uiI00 = rkBP.m_uiI00;
kSubBP.m_uiI01 = uiI0M;
kSubBP.m_uiI10 = uiIM0;
kSubBP.m_uiI11 = uiIMM;
kSubBP.m_akXuu[0] = rkBP.m_akXuu[0];
kSubBP.m_akXuu[1] = kXuu0M;
kSubBP.m_akXvv[0] = rkBP.m_akXvv[0];
kSubBP.m_akXvv[1] = kXvvM0;
if ( akXu )
{
kSubBP.m_akXuuv[0] = rkBP.m_akXuuv[0];
kSubBP.m_akXuuv[1] = kXuuv0M;
kSubBP.m_akXuvv[0] = rkBP.m_akXuvv[0];
kSubBP.m_akXuvv[1] = kXuvvM0;
}
Subdivide(uiLevel,fDSqr,akX,akXu,akXv,rkXuuvv,kSubBP);
// subblock [u0,uM]x[vM,v1]
kSubBP.m_uiI00 = uiI0M;
kSubBP.m_uiI01 = rkBP.m_uiI01;
kSubBP.m_uiI10 = uiIMM;
kSubBP.m_uiI11 = uiIM1;
kSubBP.m_akXuu[0] = kXuu0M;
kSubBP.m_akXuu[1] = rkBP.m_akXuu[1];
kSubBP.m_akXvv[0] = rkBP.m_akXvv[0];
kSubBP.m_akXvv[1] = kXvvM0;
if ( akXu )
{
kSubBP.m_akXuuv[0] = kXuuv0M;
kSubBP.m_akXuuv[1] = rkBP.m_akXuuv[1];
kSubBP.m_akXuvv[0] = rkBP.m_akXuvv[0];
kSubBP.m_akXuvv[1] = kXuvvM0;
}
Subdivide(uiLevel,fDSqr,akX,akXu,akXv,rkXuuvv,kSubBP);
// subblock [uM,u1]x[v0,vM]
kSubBP.m_uiI00 = uiIM0;
kSubBP.m_uiI01 = uiIMM;
kSubBP.m_uiI10 = rkBP.m_uiI10;
kSubBP.m_uiI11 = uiI1M;
kSubBP.m_akXuu[0] = rkBP.m_akXuu[0];
kSubBP.m_akXuu[1] = kXuu0M;
kSubBP.m_akXvv[0] = kXvvM0;
kSubBP.m_akXvv[1] = rkBP.m_akXvv[1];
if ( akXu )
{
kSubBP.m_akXuuv[0] = rkBP.m_akXuuv[0];
kSubBP.m_akXuuv[1] = kXuuv0M;
kSubBP.m_akXuvv[0] = kXuvvM0;
kSubBP.m_akXuvv[1] = rkBP.m_akXuvv[1];
}
Subdivide(uiLevel,fDSqr,akX,akXu,akXv,rkXuuvv,kSubBP);
// subblock [uM,u1]x[vM,v1]
kSubBP.m_uiI00 = uiIMM;
kSubBP.m_uiI01 = uiIM1;
kSubBP.m_uiI10 = uiI1M;
kSubBP.m_uiI11 = rkBP.m_uiI11;
kSubBP.m_akXuu[0] = kXuu0M;
kSubBP.m_akXuu[1] = rkBP.m_akXuu[1];
kSubBP.m_akXvv[0] = kXvvM0;
kSubBP.m_akXvv[1] = rkBP.m_akXvv[1];
if ( akXu )
{
kSubBP.m_akXuuv[0] = kXuuv0M;
kSubBP.m_akXuuv[1] = rkBP.m_akXuuv[1];
kSubBP.m_akXuvv[0] = kXuvvM0;
kSubBP.m_akXuvv[1] = rkBP.m_akXuvv[1];
}
Subdivide(uiLevel,fDSqr,akX,akXu,akXv,rkXuuvv,kSubBP);
}
}
//----------------------------------------------------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -