📄 mgcmatrix2.cpp
字号:
}
switch ( i )
{
case 1:
rkR[0][0] = -rkR[0][0];
rkR[0][1] = -rkR[0][1];
break;
case 2:
rkR[0][0] = -rkR[0][0];
rkR[0][1] = -rkR[0][1];
rkR[1][0] = -rkR[1][0];
rkR[1][1] = -rkR[1][1];
break;
case 3:
rkR[1][0] = -rkR[1][0];
rkR[1][1] = -rkR[1][1];
break;
}
}
//----------------------------------------------------------------------------
void MgcMatrix2::SingularValueComposition (const MgcMatrix2& rkL,
const MgcVector2& rkS, const MgcMatrix2& rkR)
{
int iRow, iCol;
MgcMatrix2 kTmp;
// product S*R
for (iRow = 0; iRow < 2; iRow++)
{
for (iCol = 0; iCol < 2; iCol++)
kTmp[iRow][iCol] = rkS[iRow]*rkR[iRow][iCol];
}
// product L*S*R
for (iRow = 0; iRow < 2; iRow++)
{
for (iCol = 0; iCol < 2; iCol++)
{
m_aafEntry[iRow][iCol] = 0.0;
for (int iMid = 0; iMid < 2; iMid++)
m_aafEntry[iRow][iCol] += rkL[iRow][iMid]*kTmp[iMid][iCol];
}
}
}
//----------------------------------------------------------------------------
void MgcMatrix2::Orthonormalize ()
{
// Algorithm uses Gram-Schmidt orthogonalization. If 'this' matrix is
// M = [m0|m1], then orthonormal output matrix is Q = [q0|q1],
//
// q0 = m0/|m0|
// q1 = (m1-(q0*m1)q0)/|m1-(q0*m1)q0|
//
// where |V| indicates length of vector V and A*B indicates dot
// product of vectors A and B.
// compute q0
MgcReal fInvLength = 1.0/MgcMath::Sqrt(m_aafEntry[0][0]*m_aafEntry[0][0]
+ m_aafEntry[1][0]*m_aafEntry[1][0]);
m_aafEntry[0][0] *= fInvLength;
m_aafEntry[1][0] *= fInvLength;
// compute q1
MgcReal fDot0 =
m_aafEntry[0][0]*m_aafEntry[0][1] +
m_aafEntry[1][0]*m_aafEntry[1][1];
m_aafEntry[0][1] -= fDot0*m_aafEntry[0][0];
m_aafEntry[1][1] -= fDot0*m_aafEntry[1][0];
fInvLength = 1.0/MgcMath::Sqrt(m_aafEntry[0][1]*m_aafEntry[0][1] +
m_aafEntry[1][1]*m_aafEntry[1][1]);
m_aafEntry[0][1] *= fInvLength;
m_aafEntry[1][1] *= fInvLength;
}
//----------------------------------------------------------------------------
void MgcMatrix2::QDUDecomposition (MgcMatrix2& rkQ, MgcVector2& rkD,
MgcReal& rkU) const
{
// Factor M = QR = QDU where Q is orthogonal, D is diagonal,
// and U is upper triangular with ones on its diagonal. Algorithm uses
// Gram-Schmidt orthogonalization (the QR algorithm).
//
// If M = [ m0 | m1 ] and Q = [ q0 | q1 ], then
//
// q0 = m0/|m0| = (a,b)
// q1 = (-b,a)
//
// where |V| indicates length of vector V and A*B indicates dot
// product of vectors A and B. The matrix R has entries
//
// r00 = q0*m0 r01 = q0*m1
// r10 = 0 r11 = q1*m1
//
// so D = diag(r00,r11) and U has entry u01 = r01/r00.
// Q = rotation
// D = scaling
// U = shear
// D stores the two diagonal entries r00, r11
// U stores the entries u01
// build orthogonal matrix Q
MgcReal fInvLength = 1.0/MgcMath::Sqrt(m_aafEntry[0][0]*m_aafEntry[0][0]);
rkQ[0][0] = m_aafEntry[0][0]*fInvLength;
rkQ[1][0] = m_aafEntry[1][0]*fInvLength;
MgcReal fDot = rkQ[0][0]*m_aafEntry[0][1] + rkQ[1][0]*m_aafEntry[1][1];
rkQ[0][1] = m_aafEntry[0][1]-fDot*rkQ[0][0];
rkQ[1][1] = m_aafEntry[1][1]-fDot*rkQ[1][0];
fInvLength = 1.0/MgcMath::Sqrt(rkQ[0][1]*rkQ[0][1] +
rkQ[1][1]*rkQ[1][1]);
rkQ[0][1] *= fInvLength;
rkQ[1][1] *= fInvLength;
// guarantee that orthogonal matrix has determinant 1 (no reflections)
MgcReal fDet = rkQ[0][0]*rkQ[1][1] - rkQ[0][1]*rkQ[1][0];
if ( fDet < 0.0 )
{
rkQ[0][1] = -rkQ[0][1];
rkQ[1][1] = -rkQ[1][1];
}
// build "right" matrix R
MgcMatrix2 kR;
kR[0][0] = rkQ[0][0]*m_aafEntry[0][0] + rkQ[1][0]*m_aafEntry[1][0];
kR[0][1] = rkQ[0][0]*m_aafEntry[0][1] + rkQ[1][0]*m_aafEntry[1][1];
kR[1][0] = 0.0;
kR[1][1] = rkQ[0][1]*m_aafEntry[0][1] + rkQ[1][1]*m_aafEntry[1][1];
// the scaling component
rkD[0] = kR[0][0];
rkD[1] = kR[1][1];
// the shear component
rkU = kR[0][1]/rkD[0];
}
//----------------------------------------------------------------------------
MgcReal MgcMatrix2::SpectralNorm () const
{
MgcMatrix2 kP;
int iRow, iCol;
MgcReal fPmax = 0.0;
for (iRow = 0; iRow < 2; iRow++)
{
for (iCol = 0; iCol < 2; iCol++)
{
kP[iRow][iCol] = 0.0;
for (int iMid = 0; iMid < 2; iMid++)
{
kP[iRow][iCol] +=
m_aafEntry[iMid][iRow]*m_aafEntry[iMid][iCol];
}
if ( kP[iRow][iCol] > fPmax )
fPmax = kP[iRow][iCol];
}
}
MgcReal fInvPmax = 1.0/fPmax;
for (iRow = 0; iRow < 2; iRow++)
{
for (iCol = 0; iCol < 3; iCol++)
kP[iRow][iCol] *= fInvPmax;
}
MgcReal fDet = kP[0][0]*kP[1][1]-kP[0][1]*kP[1][0];
MgcReal fTrace = -(kP[0][0]+kP[1][1]);
MgcReal fRoot = 0.5*(-fTrace + MgcMath::Sqrt(MgcMath::Abs(fTrace*fTrace
- 4.0*fDet)));
MgcReal fNorm = MgcMath::Sqrt(fPmax*fRoot);
return fNorm;
}
//----------------------------------------------------------------------------
MgcReal MgcMatrix2::L2NormSqr () const
{
MgcReal fNormSqr = 0.0;
for (int iRow = 0; iRow < 2; iRow++)
{
for (int iCol = 0; iCol < 2; iCol++)
{
MgcReal fSqr = m_aafEntry[iRow][iCol]*m_aafEntry[iRow][iCol];
fNormSqr += fSqr;
}
}
return fNormSqr;
}
//----------------------------------------------------------------------------
void MgcMatrix2::ToAngle (MgcReal& rfRadians) const
{
rfRadians = MgcMath::ATan2(m_aafEntry[1][0],m_aafEntry[0][0]);
}
//----------------------------------------------------------------------------
void MgcMatrix2::FromAngle (MgcReal kRadians)
{
MgcReal fCos = MgcMath::Cos(kRadians);
MgcReal fSin = MgcMath::Sin(kRadians);
m_aafEntry[0][0] = fCos;
m_aafEntry[0][1] = -fSin;
m_aafEntry[1][0] = fSin;
m_aafEntry[1][1] = fCos;
}
//----------------------------------------------------------------------------
void MgcMatrix2::Tridiagonal (MgcReal afDiag[2], MgcReal afSubDiag[2])
{
// matrix is already tridiagonal, repackage for QL algorithm
afDiag[0] = m_aafEntry[0][0];
afDiag[1] = m_aafEntry[1][1];
afSubDiag[0] = m_aafEntry[0][1];
afSubDiag[1] = 0.0;
m_aafEntry[0][0] = 1.0;
m_aafEntry[0][1] = 0.0;
m_aafEntry[1][0] = 0.0;
m_aafEntry[1][1] = 1.0;
}
//----------------------------------------------------------------------------
bool MgcMatrix2::QLAlgorithm (MgcReal afDiag[2], MgcReal afSubDiag[2])
{
for (int i0 = 0; i0 < 2; i0++)
{
const int iMaxIter = 32;
int iIter;
for (iIter = 0; iIter < iMaxIter; iIter++)
{
int i1;
for (i1 = i0; i1 <= 0; i1++)
{
MgcReal fSum = MgcMath::Abs(afDiag[i1]) +
MgcMath::Abs(afDiag[i1+1]);
if ( MgcMath::Abs(afSubDiag[i1]) + fSum == fSum )
break;
}
if ( i1 == i0 )
break;
MgcReal fTmp0 = (afDiag[i0+1]-afDiag[i0]) /
(2.0*afSubDiag[i0]);
MgcReal fTmp1 = MgcMath::Sqrt(fTmp0*fTmp0 + 1.0);
if ( fTmp0 < 0.0 )
fTmp0 = afDiag[i1]-afDiag[i0]+afSubDiag[i0]/(fTmp0-fTmp1);
else
fTmp0 = afDiag[i1]-afDiag[i0]+afSubDiag[i0]/(fTmp0+fTmp1);
MgcReal fSin = 1.0;
MgcReal fCos = 1.0;
MgcReal fTmp2 = 0.0;
for (int i2 = i1-1; i2 >= i0; i2--)
{
MgcReal fTmp3 = fSin*afSubDiag[i2];
MgcReal fTmp4 = fCos*afSubDiag[i2];
if ( MgcMath::Abs(fTmp3) >= MgcMath::Abs(fTmp0) )
{
fCos = fTmp0/fTmp3;
fTmp1 = MgcMath::Sqrt(fCos*fCos + 1.0);
afSubDiag[i2+1] = fTmp3*fTmp1;
fSin = 1.0/fTmp1;
fCos *= fSin;
}
else
{
fSin = fTmp3/fTmp0;
fTmp1 = MgcMath::Sqrt(fSin*fSin+1.0);
afSubDiag[i2+1] = fTmp0*fTmp1;
fCos = 1.0/fTmp1;
fSin *= fCos;
}
fTmp0 = afDiag[i2+1]-fTmp2;
fTmp1 = (afDiag[i2]-fTmp0)*fSin + 2.0*fTmp4*fCos;
fTmp2 = fSin*fTmp1;
afDiag[i2+1] = fTmp0+fTmp2;
fTmp0 = fCos*fTmp1-fTmp4;
for (int iRow = 0; iRow < 2; iRow++)
{
fTmp3 = m_aafEntry[iRow][i2+1];
m_aafEntry[iRow][i2+1] = fSin*m_aafEntry[iRow][i2] +
fCos*fTmp3;
m_aafEntry[iRow][i2] = fCos*m_aafEntry[iRow][i2] -
fSin*fTmp3;
}
}
afDiag[i0] -= fTmp2;
afSubDiag[i0] = fTmp0;
afSubDiag[i1] = 0.0;
}
if ( iIter == iMaxIter )
// should not get here under normal circumstances
return false;
}
return true;
}
//----------------------------------------------------------------------------
void MgcMatrix2::EigenSolveSymmetric (MgcReal afEigenvalue[2],
MgcVector2 akEigenvector[2]) const
{
MgcMatrix2 kMatrix = *this;
MgcReal afSubDiag[3];
kMatrix.Tridiagonal(afEigenvalue,afSubDiag);
kMatrix.QLAlgorithm(afEigenvalue,afSubDiag);
for (int i = 0; i < 2; i++)
{
akEigenvector[i][0] = kMatrix[0][i];
akEigenvector[i][1] = kMatrix[1][i];
}
// make eigenvectors form a right--handed system
MgcReal fDet = akEigenvector[0].Dot(akEigenvector[1]);
if ( fDet < 0.0 )
{
akEigenvector[1][0] = - akEigenvector[1][0];
akEigenvector[1][1] = - akEigenvector[1][1];
}
}
//----------------------------------------------------------------------------
void MgcMatrix2::TensorProduct (const MgcVector2& rkU, const MgcVector2& rkV,
MgcMatrix2& rkProduct)
{
for (int iRow = 0; iRow < 2; iRow++)
{
for (int iCol = 0; iCol < 2; iCol++)
rkProduct[iRow][iCol] = rkU[iRow]*rkV[iCol];
}
}
//----------------------------------------------------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -