📄 dct.c
字号:
/************************************************************************
*
* dct.c, part of tmn (TMN encoder)
*
************************************************************************/
#include "macros.h"
#include "sim.h"
#include <math.h>
#ifndef PI
# ifdef M_PI
# define PI M_PI
# else
# define PI 3.14159265358979323846
# endif
#endif
int zigzag[8][8] = {
{ 0, 1, 5, 6,14,15,27,28},
{ 2, 4, 7,13,16,26,29,42},
{ 3, 8,12,17,25,30,41,43},
{ 9,11,18,24,31,40,44,53},
{10,19,23,32,39,45,52,54},
{20,22,33,38,46,51,55,60},
{21,34,37,47,50,56,59,61},
{35,36,48,49,57,58,62,63},
};
/**********************************************************************
*
* Name: Dct
* Description: Does dct on an 8x8 block, does zigzag-scanning of
* coefficients
*
* Input: 64 pixels in a 1D array
* Returns: 64 coefficients in a 1D array
* Side effects:
*
**********************************************************************/
int Dct( int *block, int *coeff)
{
int j1, i, j, k;
float b[8];
float b1[8];
float d[8][8];
float f0=(float).7071068;
float f1=(float).4903926;
float f2=(float).4619398;
float f3=(float).4157348;
float f4=(float).3535534;
float f5=(float).2777851;
float f6=(float).1913417;
float f7=(float).0975452;
for (i = 0, k = 0; i < 8; i++, k += 8) {
for (j = 0; j < 8; j++) {
b[j] = (float)block[k+j];
}
/* Horizontal transform */
for (j = 0; j < 4; j++) {
j1 = 7 - j;
b1[j] = b[j] + b[j1];
b1[j1] = b[j] - b[j1];
}
b[0] = b1[0] + b1[3];
b[1] = b1[1] + b1[2];
b[2] = b1[1] - b1[2];
b[3] = b1[0] - b1[3];
b[4] = b1[4];
b[5] = (b1[6] - b1[5]) * f0;
b[6] = (b1[6] + b1[5]) * f0;
b[7] = b1[7];
d[i][0] = (b[0] + b[1]) * f4;
d[i][4] = (b[0] - b[1]) * f4;
d[i][2] = b[2] * f6 + b[3] * f2;
d[i][6] = b[3] * f6 - b[2] * f2;
b1[4] = b[4] + b[5];
b1[7] = b[7] + b[6];
b1[5] = b[4] - b[5];
b1[6] = b[7] - b[6];
d[i][1] = b1[4] * f7 + b1[7] * f1;
d[i][5] = b1[5] * f3 + b1[6] * f5;
d[i][7] = b1[7] * f7 - b1[4] * f1;
d[i][3] = b1[6] * f3 - b1[5] * f5;
}
/* Vertical transform */
for (i = 0; i < 8; i++) {
for (j = 0; j < 4; j++) {
j1 = 7 - j;
b1[j] = d[j][i] + d[j1][i];
b1[j1] = d[j][i] - d[j1][i];
}
b[0] = b1[0] + b1[3];
b[1] = b1[1] + b1[2];
b[2] = b1[1] - b1[2];
b[3] = b1[0] - b1[3];
b[4] = b1[4];
b[5] = (b1[6] - b1[5]) * f0;
b[6] = (b1[6] + b1[5]) * f0;
b[7] = b1[7];
d[0][i] = (b[0] + b[1]) * f4;
d[4][i] = (b[0] - b[1]) * f4;
d[2][i] = b[2] * f6 + b[3] * f2;
d[6][i] = b[3] * f6 - b[2] * f2;
b1[4] = b[4] + b[5];
b1[7] = b[7] + b[6];
b1[5] = b[4] - b[5];
b1[6] = b[7] - b[6];
d[1][i] = b1[4] * f7 + b1[7] * f1;
d[5][i] = b1[5] * f3 + b1[6] * f5;
d[7][i] = b1[7] * f7 - b1[4] * f1;
d[3][i] = b1[6] * f3 - b1[5] * f5;
}
/* Zigzag - scanning */
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++) {
*(coeff + zigzag[i][j]) = (int)(d[i][j]);
}
}
return 0;
}
#ifdef FASTIDCT
/**********************************************************************
*
* Name: idct
* Description: Descans zigzag-scanned coefficients and does
* inverse dct on 64 coefficients
* single precision floats
*
* Input: 64 coefficients, block for 64 pixels
* Returns: 0
* Side effects:
*
* Date: 930128
*
**********************************************************************/
int idct(int *coeff,int *block)
{
int j1, i, j;
double b[8], b1[8], d[8][8];
double f0=.7071068;
double f1=.4903926;
double f2=.4619398;
double f3=.4157348;
double f4=.3535534;
double f5=.2777851;
double f6=.1913417;
double f7=.0975452;
double e, f, g, h;
/* Horizontal */
/* Descan coefficients first */
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++) {
b[j] = *( coeff + zigzag[i][j]);
}
e = b[1] * f7 - b[7] * f1;
h = b[7] * f7 + b[1] * f1;
f = b[5] * f3 - b[3] * f5;
g = b[3] * f3 + b[5] * f5;
b1[0] = (b[0] + b[4]) * f4;
b1[1] = (b[0] - b[4]) * f4;
b1[2] = b[2] * f6 - b[6] * f2;
b1[3] = b[6] * f6 + b[2] * f2;
b[4] = e + f;
b1[5] = e - f;
b1[6] = h - g;
b[7] = h + g;
b[5] = (b1[6] - b1[5]) * f0;
b[6] = (b1[6] + b1[5]) * f0;
b[0] = b1[0] + b1[3];
b[1] = b1[1] + b1[2];
b[2] = b1[1] - b1[2];
b[3] = b1[0] - b1[3];
for (j = 0; j < 4; j++) {
j1 = 7 - j;
d[i][j] = b[j] + b[j1];
d[i][j1] = b[j] - b[j1];
}
}
/* Vertical */
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++) {
b[j] = d[j][i];
}
e = b[1] * f7 - b[7] * f1;
h = b[7] * f7 + b[1] * f1;
f = b[5] * f3 - b[3] * f5;
g = b[3] * f3 + b[5] * f5;
b1[0] = (b[0] + b[4]) * f4;
b1[1] = (b[0] - b[4]) * f4;
b1[2] = b[2] * f6 - b[6] * f2;
b1[3] = b[6] * f6 + b[2] * f2;
b[4] = e + f;
b1[5] = e - f;
b1[6] = h - g;
b[7] = h + g;
b[5] = (b1[6] - b1[5]) * f0;
b[6] = (b1[6] + b1[5]) * f0;
b[0] = b1[0] + b1[3];
b[1] = b1[1] + b1[2];
b[2] = b1[1] - b1[2];
b[3] = b1[0] - b1[3];
for (j = 0; j < 4; j++) {
j1 = 7 - j;
d[j][i] = b[j] + b[j1];
d[j1][i] = b[j] - b[j1];
}
}
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++) {
*(block + i * 8 + j) = mnint(d[i][j]);
}
}
return 0;
}
#else
/* Perform IEEE 1180 reference (64-bit floating point, separable 8x1
* direct matrix multiply) Inverse Discrete Cosine Transform
*/
/* Here we use math.h to generate constants. Compiler results may
vary a little */
/* private data */
/* cosine transform matrix for 8x1 IDCT */
static double c[8][8];
/* initialize DCT coefficient matrix */
void init_idctref()
{
int freq, time;
double scale;
for (freq=0; freq < 8; freq++)
{
scale = (freq == 0) ? sqrt(0.125) : 0.5;
for (time=0; time<8; time++)
c[freq][time] = scale*cos((PI/8.0)*freq*(time + 0.5));
}
}
/* perform IDCT matrix multiply for 8x8 coefficient block */
void idctref(int *coeff, int *block)
{
int i, j, k, v;
double partial_product;
double tmp[64];
int tmp2[64];
extern int zigzag[8][8];
for (i=0; i<8; i++)
for (j=0; j<8; j++)
tmp2[j+i*8] = *(coeff + zigzag[i][j]);
for (i=0; i<8; i++)
for (j=0; j<8; j++)
{
partial_product = 0.0;
for (k=0; k<8; k++)
partial_product+= c[k][j]*tmp2[8*i+k];
tmp[8*i+j] = partial_product;
}
/* Transpose operation is integrated into address mapping by switching
loop order of i and j */
for (j=0; j<8; j++)
for (i=0; i<8; i++)
{
partial_product = 0.0;
for (k=0; k<8; k++)
partial_product+= c[k][i]*tmp[8*k+j];
v = (int)floor(partial_product+0.5);
block[8*i+j] = (v<-256) ? -256 : ((v>255) ? 255 : v);
}
}
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -