📄 tif_lzw.c
字号:
*/ if (sp->dec_restart) { long residue; codep = sp->dec_codep; residue = codep->length - sp->dec_restart; if (residue > occ) { /* * Residue from previous decode is sufficient * to satisfy decode request. Skip to the * start of the decoded string, place decoded * values in the output buffer, and return. */ sp->dec_restart += occ; do { codep = codep->next; } while (--residue > occ); tp = op + occ; do { *--tp = codep->value; codep = codep->next; } while (--occ); return (1); } /* * Residue satisfies only part of the decode request. */ op += residue, occ -= residue; tp = op; do { *--tp = codep->value; codep = codep->next; } while (--residue); sp->dec_restart = 0; } bp = (u_char *)tif->tif_rawcp; nbits = sp->lzw_nbits; nextdata = sp->lzw_nextdata; nextbits = sp->lzw_nextbits; nbitsmask = sp->dec_nbitsmask; oldcodep = sp->dec_oldcodep; free_entp = sp->dec_free_entp; maxcodep = sp->dec_maxcodep; while (occ > 0) { NextCode(tif, sp, bp, code, GetNextCodeCompat); if (code == CODE_EOI) break; if (code == CODE_CLEAR) { free_entp = sp->dec_codetab + CODE_FIRST; nbits = BITS_MIN; nbitsmask = MAXCODE(BITS_MIN); maxcodep = sp->dec_codetab + nbitsmask; NextCode(tif, sp, bp, code, GetNextCodeCompat); if (code == CODE_EOI) break; *op++ = code, occ--; oldcodep = sp->dec_codetab + code; continue; } codep = sp->dec_codetab + code; /* * Add the new entry to the code table. */ assert(&sp->dec_codetab[0] <= free_entp && free_entp < &sp->dec_codetab[CSIZE]); free_entp->next = oldcodep; free_entp->firstchar = free_entp->next->firstchar; free_entp->length = free_entp->next->length+1; free_entp->value = (codep < free_entp) ? codep->firstchar : free_entp->firstchar; if (++free_entp > maxcodep) { if (++nbits > BITS_MAX) /* should not happen */ nbits = BITS_MAX; nbitsmask = MAXCODE(nbits); maxcodep = sp->dec_codetab + nbitsmask; } oldcodep = codep; if (code >= 256) { /* * Code maps to a string, copy string * value to output (written in reverse). */ if (codep->length > occ) { /* * String is too long for decode buffer, * locate portion that will fit, copy to * the decode buffer, and setup restart * logic for the next decoding call. */ sp->dec_codep = codep; do { codep = codep->next; } while (codep->length > occ); sp->dec_restart = occ; tp = op + occ; do { *--tp = codep->value; codep = codep->next; } while (--occ); break; } op += codep->length, occ -= codep->length; tp = op; do { *--tp = codep->value; } while( (codep = codep->next) != NULL); } else *op++ = code, occ--; } tif->tif_rawcp = (tidata_t) bp; sp->lzw_nbits = nbits; sp->lzw_nextdata = nextdata; sp->lzw_nextbits = nextbits; sp->dec_nbitsmask = nbitsmask; sp->dec_oldcodep = oldcodep; sp->dec_free_entp = free_entp; sp->dec_maxcodep = maxcodep; if (occ > 0) { TIFFError(tif->tif_name, "LZWDecodeCompat: Not enough data at scanline %d (short %d bytes)", tif->tif_row, occ); return (0); } return (1);}#endif /* LZW_COMPAT *//* * LZW Encoding. */static intLZWSetupEncode(TIFF* tif){ LZWEncodeState* sp = EncoderState(tif); static const char module[] = "LZWSetupEncode"; assert(sp != NULL); sp->enc_hashtab = (hash_t*) _TIFFmalloc(HSIZE*sizeof (hash_t)); if (sp->enc_hashtab == NULL) { TIFFError(module, "No space for LZW hash table"); return (0); } return (1);}/* * Reset encoding state at the start of a strip. */static intLZWPreEncode(TIFF* tif, tsample_t s){ LZWEncodeState *sp = EncoderState(tif); (void) s; assert(sp != NULL); sp->lzw_nbits = BITS_MIN; sp->lzw_maxcode = MAXCODE(BITS_MIN); sp->lzw_free_ent = CODE_FIRST; sp->lzw_nextbits = 0; sp->lzw_nextdata = 0; sp->enc_checkpoint = CHECK_GAP; sp->enc_ratio = 0; sp->enc_incount = 0; sp->enc_outcount = 0; /* * The 4 here insures there is space for 2 max-sized * codes in LZWEncode and LZWPostDecode. */ sp->enc_rawlimit = tif->tif_rawdata + tif->tif_rawdatasize-1 - 4; cl_hash(sp); /* clear hash table */ sp->enc_oldcode = (hcode_t) -1; /* generates CODE_CLEAR in LZWEncode */ return (1);}#define CALCRATIO(sp, rat) { \ if (incount > 0x007fffff) { /* NB: shift will overflow */\ rat = outcount >> 8; \ rat = (rat == 0 ? 0x7fffffff : incount/rat); \ } else \ rat = (incount<<8) / outcount; \}#define PutNextCode(op, c) { \ nextdata = (nextdata << nbits) | c; \ nextbits += nbits; \ *op++ = (u_char)(nextdata >> (nextbits-8)); \ nextbits -= 8; \ if (nextbits >= 8) { \ *op++ = (u_char)(nextdata >> (nextbits-8)); \ nextbits -= 8; \ } \ outcount += nbits; \}/* * Encode a chunk of pixels. * * Uses an open addressing double hashing (no chaining) on the * prefix code/next character combination. We do a variant of * Knuth's algorithm D (vol. 3, sec. 6.4) along with G. Knott's * relatively-prime secondary probe. Here, the modular division * first probe is gives way to a faster exclusive-or manipulation. * Also do block compression with an adaptive reset, whereby the * code table is cleared when the compression ratio decreases, * but after the table fills. The variable-length output codes * are re-sized at this point, and a CODE_CLEAR is generated * for the decoder. */static intLZWEncode(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s){ register LZWEncodeState *sp = EncoderState(tif); register long fcode; register hash_t *hp; register int h, c; hcode_t ent; long disp; long incount, outcount, checkpoint; long nextdata, nextbits; int free_ent, maxcode, nbits; tidata_t op, limit; (void) s; if (sp == NULL) return (0); /* * Load local state. */ incount = sp->enc_incount; outcount = sp->enc_outcount; checkpoint = sp->enc_checkpoint; nextdata = sp->lzw_nextdata; nextbits = sp->lzw_nextbits; free_ent = sp->lzw_free_ent; maxcode = sp->lzw_maxcode; nbits = sp->lzw_nbits; op = tif->tif_rawcp; limit = sp->enc_rawlimit; ent = sp->enc_oldcode; if (ent == (hcode_t) -1 && cc > 0) { /* * NB: This is safe because it can only happen * at the start of a strip where we know there * is space in the data buffer. */ PutNextCode(op, CODE_CLEAR); ent = *bp++; cc--; incount++; } while (cc > 0) { c = *bp++; cc--; incount++; fcode = ((long)c << BITS_MAX) + ent; h = (c << HSHIFT) ^ ent; /* xor hashing */#ifdef _WINDOWS /* * Check hash index for an overflow. */ if (h >= HSIZE) h -= HSIZE;#endif hp = &sp->enc_hashtab[h]; if (hp->hash == fcode) { ent = hp->code; continue; } if (hp->hash >= 0) { /* * Primary hash failed, check secondary hash. */ disp = HSIZE - h; if (h == 0) disp = 1; do { /* * Avoid pointer arithmetic 'cuz of * wraparound problems with segments. */ if ((h -= disp) < 0) h += HSIZE; hp = &sp->enc_hashtab[h]; if (hp->hash == fcode) { ent = hp->code; goto hit; } } while (hp->hash >= 0); } /* * New entry, emit code and add to table. */ /* * Verify there is space in the buffer for the code * and any potential Clear code that might be emitted * below. The value of limit is setup so that there * are at least 4 bytes free--room for 2 codes. */ if (op > limit) { tif->tif_rawcc = (tsize_t)(op - tif->tif_rawdata); TIFFFlushData1(tif); op = tif->tif_rawdata; } PutNextCode(op, ent); ent = c; hp->code = free_ent++; hp->hash = fcode; if (free_ent == CODE_MAX-1) { /* table is full, emit clear code and reset */ cl_hash(sp); sp->enc_ratio = 0; incount = 0; outcount = 0; free_ent = CODE_FIRST; PutNextCode(op, CODE_CLEAR); nbits = BITS_MIN; maxcode = MAXCODE(BITS_MIN); } else { /* * If the next entry is going to be too big for * the code size, then increase it, if possible. */ if (free_ent > maxcode) { nbits++; assert(nbits <= BITS_MAX); maxcode = (int) MAXCODE(nbits); } else if (incount >= checkpoint) { long rat; /* * Check compression ratio and, if things seem * to be slipping, clear the hash table and * reset state. The compression ratio is a * 24+8-bit fractional number. */ checkpoint = incount+CHECK_GAP; CALCRATIO(sp, rat); if (rat <= sp->enc_ratio) { cl_hash(sp); sp->enc_ratio = 0; incount = 0; outcount = 0; free_ent = CODE_FIRST; PutNextCode(op, CODE_CLEAR); nbits = BITS_MIN; maxcode = MAXCODE(BITS_MIN); } else sp->enc_ratio = rat; } } hit: ; } /* * Restore global state. */ sp->enc_incount = incount; sp->enc_outcount = outcount; sp->enc_checkpoint = checkpoint; sp->enc_oldcode = ent; sp->lzw_nextdata = nextdata; sp->lzw_nextbits = nextbits; sp->lzw_free_ent = free_ent; sp->lzw_maxcode = maxcode; sp->lzw_nbits = nbits; tif->tif_rawcp = op; return (1);}/* * Finish off an encoded strip by flushing the last * string and tacking on an End Of Information code. */static intLZWPostEncode(TIFF* tif){ register LZWEncodeState *sp = EncoderState(tif); tidata_t op = tif->tif_rawcp; long nextbits = sp->lzw_nextbits; long nextdata = sp->lzw_nextdata; long outcount = sp->enc_outcount; int nbits = sp->lzw_nbits; if (op > sp->enc_rawlimit) { tif->tif_rawcc = (tsize_t)(op - tif->tif_rawdata); TIFFFlushData1(tif); op = tif->tif_rawdata; } if (sp->enc_oldcode != (hcode_t) -1) { PutNextCode(op, sp->enc_oldcode); sp->enc_oldcode = (hcode_t) -1; } PutNextCode(op, CODE_EOI); if (nextbits > 0) *op++ = (u_char)(nextdata << (8-nextbits)); tif->tif_rawcc = (tsize_t)(op - tif->tif_rawdata); return (1);}/* * Reset encoding hash table. */static voidcl_hash(LZWEncodeState* sp){ register hash_t *hp = &sp->enc_hashtab[HSIZE-1]; register long i = HSIZE-8; do { i -= 8; hp[-7].hash = -1; hp[-6].hash = -1; hp[-5].hash = -1; hp[-4].hash = -1; hp[-3].hash = -1; hp[-2].hash = -1; hp[-1].hash = -1; hp[ 0].hash = -1; hp -= 8; } while (i >= 0); for (i += 8; i > 0; i--, hp--) hp->hash = -1;}static voidLZWCleanup(TIFF* tif){ if (tif->tif_data) { if (LZWState(tif)->rw_mode == O_RDONLY) { if (DecoderState(tif)->dec_codetab) _TIFFfree(DecoderState(tif)->dec_codetab); } else { if (EncoderState(tif)->enc_hashtab) _TIFFfree(EncoderState(tif)->enc_hashtab); } _TIFFfree(tif->tif_data); tif->tif_data = NULL; }}intTIFFInitLZW(TIFF* tif, int scheme){ assert(scheme == COMPRESSION_LZW); /* * Allocate state block so tag methods have storage to record values. */ if (tif->tif_mode == O_RDONLY) { tif->tif_data = (tidata_t) _TIFFmalloc(sizeof (LZWDecodeState)); if (tif->tif_data == NULL) goto bad; DecoderState(tif)->dec_codetab = NULL; DecoderState(tif)->dec_decode = NULL; } else { tif->tif_data = (tidata_t) _TIFFmalloc(sizeof (LZWEncodeState)); if (tif->tif_data == NULL) goto bad; EncoderState(tif)->enc_hashtab = NULL; } LZWState(tif)->rw_mode = tif->tif_mode; /* * Install codec methods. */ tif->tif_setupdecode = LZWSetupDecode; tif->tif_predecode = LZWPreDecode; tif->tif_decoderow = LZWDecode; tif->tif_decodestrip = LZWDecode; tif->tif_decodetile = LZWDecode; tif->tif_setupencode = LZWSetupEncode; tif->tif_preencode = LZWPreEncode; tif->tif_postencode = LZWPostEncode; tif->tif_encoderow = LZWEncode; tif->tif_encodestrip = LZWEncode; tif->tif_encodetile = LZWEncode; tif->tif_cleanup = LZWCleanup; /* * Setup predictor setup. */ (void) TIFFPredictorInit(tif); return (1);bad: TIFFError("TIFFInitLZW", "No space for LZW state block"); return (0);}/* * Copyright (c) 1985, 1986 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * James A. Woods, derived from original work by Spencer Thomas * and Joseph Orost. * * Redistribution and use in source and binary forms are permitted * provided that the above copyright notice and this paragraph are * duplicated in all such forms and that any documentation, * advertising materials, and other materials related to such * distribution and use acknowledge that the software was developed * by the University of California, Berkeley. The name of the * University may not be used to endorse or promote products derived * from this software without specific prior written permission. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. */#endif /* LZW_SUPPORT */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -