功率MOSFET的主要参数特性:
① 漏源击穿电压(V) V(BR)DSS :是在UGS =0时漏极和源极所能承受的最大电压,它是结温的正温度系数函数。 ② 漏极额定电流ID :ID 是流过漏极的最大的连续电流,它主要受器件工作温度的限制。一般生产厂家给出的漏极额定电流是器件外壳温度Tc=25℃时的值,所以在选择器件时要考虑充分的裕度,防止在器件温度升高时漏极额定电流降低而损坏器件。 ③ 通态电阻RDS(ON) :它是功率MOSFET导通时漏源电压与漏极电流的比率,它直接决定漏极电流。当功率MOSFET导通时,漏极电流流过通态电阻产生耗散功率,通态电阻值愈大,耗散功率愈大,越容易损坏器件。另外,通态电阻与栅极驱动电压UGS有关,UGS 愈高,RDS(ON) 愈小,而且栅源电压过低,抗干扰能力差,容易误关断;但过高的栅极电压会延缓开通和关断的充放电时间,即影响器件的开关特性。所以综合考虑,一般取UGS =12-15V为宜。 手册中给出的RDS(ON) 是指器件温度为25℃时的数值,实际上器件温度每升高1℃,RDS(ON) 将增大0.7%,为正温度系数。 ④ 最大耗散功率PD (W):是器件所能承受的最大发热功率(器件温度为25℃时)。 ⑤ 热阻RΘjc (℃/W):是结温和外壳温度差值相对于漏极电流所产生的热功率的比率。其中:θ-表示温度,J-表示结温,C-表示外壳。 ⑥ 输入电容(包括栅漏极间电容CGD和栅源极间电容CGS) :在驱动MOSFET中输入电容是一个非常重要的参数,必须通过对其充放电才能开关MOSFET,所以驱动电路的输出阻抗将严重影响MOSFET的开关速度。输出阻抗愈小,驱动电路对输入电容的充放电速度就越快,开关速度也就越快。温度对输入电容几乎没有影响,所以温度对器件开关速度影响很小。栅漏极间电容CGD 是跨接在输出和输入回路之间,所以称为米勒电容。 ⑦ 栅极驱动电压UGS :如果栅源电压超过20v,即使电流被限于很小值,栅源之间的硅氧化层仍很容易被击穿,这是器件损坏的最常见原因之一,因此,应该注意使栅源电压不得超过额定值。还应始终记住,即使所加栅极电压保持低于栅-源间最大额定电压,栅极连续的寄生电感和栅极电容耦合也会产生使氧化层损坏的振荡电压。通过栅漏自身电容,还可把漏极电路瞬变造成的过电压耦合过来。鉴于上述原因,应在栅-源间跨接一个齐纳稳压二极管,以对栅极电压提供可靠的嵌位。通常还采用一个小电阻或铁氧体来抑制不希望的振荡。 ⑧ MOSFET的截止,不需要象双极晶体管那样,对驱动电路进行精心设计(如在栅极加负压)。因为MOSFET是多数载流子半导体器件,只要把加在栅极-源极之间的电压一撤消(即降到0v),它马上就会截止。(见参(2) P70) ⑨ 在工艺设计中,应尽量减小与MOSFET各管脚连线的长度,特别是栅极连线的长度。如果实在无法减小其长度,可以用铁氧体小磁环或一个小电阻和MOSFET的栅极串接起来,这两个元件尽量靠近MOSFET的栅极。最好在栅极和源极之间再接一个10K的电阻,以防栅极回路不慎断开而烧毁MOSFET。 功率MOSFET内含一个与沟道平行的反向二极管,又称“体二极管”。? 注意:这个二极管的反向恢复时间长达几us到几十us,其高频开关特性远不如功率MOSFET本身,使之在高频下的某些场合成了累赘。来顶一下 | 51 |