📦
基于模糊神经网络的永磁同步电机控制.pdf - 免费下载
技术资料资源
文件大小:728 K
📋 资源详细信息
💡 温馨提示:本资源由用户 ttalli 上传分享,仅供学习交流使用。如有侵权,请联系我们删除。
📄 资源简介
永磁同步电机(pmsm)由于其优异的性能广泛应用于工业自动化、数控机床、机器人、航空航天等领域。但是在电机控制系统中,由于系统具有严重的非线性、时变性、复杂性,并受各种干扰,难以建立其精确的数学模型,以常规的pid控制算法或现代的控制理论都难以达到满意的控制效果。神经网络作为一种不依赖模型的控制方法,在非线性控制研究领域得到了广泛的应用;但是多数的神经网络训练都需要大量的数据进行离线训练,训练时间较长且收敛慢。rbf神经网络是一种两层局部收敛的网络,比起前项多层神经网络具有更快的收敛速度。又考虑到工业系统的惯性,系统的控制通常存在过渡过程,直接利用反馈控制器的输出信号来训练神经网络,会导致神经网络的学习产生震荡或进入饱和状态。故本文利用神经网络的并行运算能力来实现模糊规则的快速推理,并用学习算法在线调整权值, 有效的消除了参数扰动和负载扰动。使其具有自学习、自适应能力,以获取满意的控制效果。
💾
立即下载此资源
💡 提示:下载后请用压缩软件解压,推荐使用 WinRAR 或 7-Zip
📖 资源说明
📥 下载说明
- 下载需消耗 2积分
- 24小时内重复下载不扣分
- 支持断点续传
- 资源永久有效
📦 使用说明
- 下载后用解压软件解压
- 推荐 WinRAR 或 7-Zip
- 如有密码请查看说明
- 解压后即可使用
🎁 积分获取
- 上传资源获得积分
- 每日签到免费领取
- 邀请好友注册奖励
- 查看详情 →