可解释的机器学习 - 免费下载

书籍资源 文件大小:15369 K

📋 资源详细信息

文件格式
PDF
所属分类
上传用户
上传时间
文件大小
15369 K
所需积分
2 积分
推荐指数
⭐⭐⭐ (3/5)

💡 温馨提示:本资源由用户 bejesus 上传分享,仅供学习交流使用。如有侵权,请联系我们删除。

资源简介

机器学习对于改进产品、过程和研究有着很⼤的潜⼒。但是计算机通常无法解释他们的预测,这是采⽤机器学习的障碍。这本书是关于使机器学习模型及其决策可解释的。
在探索了可解释性的概念之后,你将学习简单的、可解释的模型,例如决策树、决策规则和线性回归。后⾯⼏章重点介绍了解释⿊盒模型的模型⽆关的⼀般⽅法,如特征重要性和累积局部效应,以及⽤
Shapley 值和 LIME 解释单个实例预测。
所有的解释⽅法进⾏了深⼊说明和批判性讨论。它们如何在⿊盒下⼯作的?它们的优缺点是什么?
如何解释它们的输出?本书将使你能够选择并正确应⽤最适合你的机器学习项⽬的解释⽅法。
这本书的重点是表格式数据
(也称为关系数据或结构化数据) 的机器学习模型,较少涉及到计算机
视觉和⾃然语⾔处理任务。建议机器学习从业者、数据科学家、统计学家和任何对使机器学习模型
可解释的⼈阅读本书。

立即下载此资源

提示:下载后请用压缩软件解压,推荐使用 WinRAR 或 7-Zip

资源说明

📥 下载说明

  • 下载需消耗 2积分
  • 24小时内重复下载不扣分
  • 支持断点续传
  • 资源永久有效

📦 使用说明

  • 下载后用解压软件解压
  • 推荐 WinRAR 或 7-Zip
  • 如有密码请查看说明
  • 解压后即可使用

🎁 积分获取

  • 上传资源获得积分
  • 每日签到免费领取
  • 邀请好友注册奖励
  • 查看详情 →

相关标签

点击标签查看更多相关资源:

相关资源推荐