LatentSVM论文 - 免费下载

技术书籍资源 文件大小:2610 K

📋 资源详细信息

文件格式
未知
所属分类
上传用户
上传时间
文件大小
2610 K
所需积分
2 积分
推荐指数
⭐⭐⭐ (3/5)

💡 温馨提示:本资源由用户 zhangdongde 上传分享,仅供学习交流使用。如有侵权,请联系我们删除。

资源简介

The object detector described below has been initially proposed by P.F. Felzenszwalb in [Felzenszwalb2010]. It is based on a Dalal-Triggs detector that uses a single filter on histogram of oriented gradients (HOG) features to represent an object category. This detector uses a sliding window approach, where a filter is applied at all positions and scales of an image. The first innovation is enriching the Dalal-Triggs model using a star-structured part-based model defined by a “root” filter (analogous to the Dalal-Triggs filter) plus a set of parts filters and associated deformation models. The score of one of star models at a particular position and scale within an image is the score of the root filter at the given location plus the sum over parts of the maximum, over placements of that part, of the part filter score on its location minus a deformation cost easuring the deviation of the part from its ideal location relative to the root. Both root and part filter scores are defined by the dot product between a filter (a set of weights) and a subwindow of a feature pyramid computed from the input image. Another improvement is a representation of the class of models by a mixture of star models. The score of a mixture model at a particular position and scale is the maximum over components, of the score of that component model at the given location.

立即下载此资源

提示:下载后请用压缩软件解压,推荐使用 WinRAR 或 7-Zip

资源说明

📥 下载说明

  • 下载需消耗 2积分
  • 24小时内重复下载不扣分
  • 支持断点续传
  • 资源永久有效

📦 使用说明

  • 下载后用解压软件解压
  • 推荐 WinRAR 或 7-Zip
  • 如有密码请查看说明
  • 解压后即可使用

🎁 积分获取

  • 上传资源获得积分
  • 每日签到免费领取
  • 邀请好友注册奖励
  • 查看详情 →

相关标签

点击标签查看更多相关资源:

相关资源推荐