虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

时钟模块

  • C语言模块化编程实例

    详细描述了4个模块化编程的实例,包括LED闪烁、led渐亮渐暗、电子时钟。是从入门级到高级编程的一个很好实例示范

    标签: C语言 模块化 编程实例

    上传时间: 2013-05-28

    上传用户:yd19890720

  • ARM驱动AS3992模块的程序

    ARM开发板直接驱动RFM-x模块的相关程序和函数节选。在STM32F107开发板上调试运行通过。演示程序已经支持4.3’LCD触摸屏、8GMicroSD卡、EEPROM、2M的Flash SST25VF016B,支持两个串口、一个SPI,还有按键、LED,有实时时钟等,软件功能有文本浏览、图片浏览、画板,以及RFID读写。

    标签: 3992 ARM AS 驱动

    上传时间: 2013-04-24

    上传用户:hmy2st

  • 异步FIFO是用来适配不同异步FIFO采用了格雷(GRAY)变换技术和双端口RAM实现了不同时钟域之间的数据无损传输

    异步FIFO是用来适配不同时钟域之间的相位差和频率飘移的重要模块。本文设计的异步FIFO采用了格雷(GRAY)变换技术和双端口RAM实现了不同时钟域之间的数据无损传输。该结构利用了GRAY变换的特点,使得整个系统可靠性高和抗干扰能力强,系统可以工作在读写时钟频率漂移达到正负300PPM的恶劣环境。并且由于采用了模块化结构,使得系统具有良好的可扩充性。

    标签: FIFO GRAY RAM 适配

    上传时间: 2013-08-08

    上传用户:13817753084

  • MSP430模数转换模块--ADC12

    MSP430的各种调好的模块,串口,模数转换,时钟,定时器、低功耗、看门狗、PWM等

    标签: MSP 430 ADC 12

    上传时间: 2013-10-16

    上传用户:YKLMC

  • 3GHz射频信号源模块GR6710

    产品概要: 3GHz射频信号源模块GR6710是软件程控的虚拟仪器模块,可以通过测控软件产生9kHz到3GHz的射频信号源和AM/FM/CW调制输出,具有CPCI、PXI、SPI、RS232、RS485和自定义IO接口。 产品描述: 3GHz射频信号源模块GR6710是软件程控的虚拟仪器模块,可以通过测控软件产生9kHz到3GHz的射频信号源和AM/FM/CW调制输出,还可以通过IQ选件实现其它任意调制输出。GR6710既可程控发生点频信号和扫频信号,也支持内部调制和外部调制。GR6710可安装于3U/6U背板上工作,也可以独立供电工作,使用灵活。该模块可用于通信测试、校准信号源。 技术指标 频率特性 频率范围:9kHz~3GHz,500KHz以下指标不保证 频率分辨率:3Hz,1Hz(载频<10MHz时) 频率稳定度:晶振保证 电平特性 电平范围:-110dBm~+10dBm 电平分辨率:0.5dB 电平准确度:≤±2.5dB@POWER<-90dBm,≤±1.5dB@POWER>-90dBm 输出关断功能 频谱纯度 谐波:9KHz~200MHz≥20dBc,200MHz~3GHz≥30dBc 非谐波:≤80dBc典型值(偏移10kHz,载频<1GHz),≥68dBc(偏移10kHz,其它载频), 锁相环小数分频杂散≥64dBc(偏移10kHz) SSB相噪: ≤-98dBc/Hz 偏移20kHz(500MHz) ≤-102dBc/Hz 偏移20kHz(1GHz) ≤-90dBc/Hz 偏移20kHz(>1GHz) 调制输出:调幅AM、调频FM、脉冲CW,其它调制输出可以通过IQ选件实现 调制源:内、外 参考时钟输入和输出:10MHz,14dBm 控制接口:CPCI、PXI、SPI、RS232、RS485、自定义GPIO 射频和时钟连接器:SMA-K 电源接口:背板供电、独立供电 可选 电源及其功耗:+5V DC、±12V DC(纹波≤2%输出电压),≤38W 结构尺寸:3U高度4槽宽度(100mm×160mm×82mm,不含连接器部分) 工作环境:商业级温度和工业级温度 可选,振动、冲击、可靠性、MTBF 测控软件功能:射频信号发生、调制信号输出、跳频/扫频信号发生、支持WindowsXP系统 成功案例: 通信综测仪器内部的信号源模块 无线电监测设备内部的信号校准模块 无线电通信测试仪器的调制信号发生

    标签: 3GHz 6710 GR 射频信号源

    上传时间: 2013-11-13

    上传用户:s363994250

  • DRAM内存模块的设计技术

    第二部分:DRAM 内存模块的设计技术..............................................................143第一章 SDR 和DDR 内存的比较..........................................................................143第二章 内存模块的叠层设计.............................................................................145第三章 内存模块的时序要求.............................................................................1493.1 无缓冲(Unbuffered)内存模块的时序分析.......................................1493.2 带寄存器(Registered)的内存模块时序分析...................................154第四章 内存模块信号设计.................................................................................1594.1 时钟信号的设计.......................................................................................1594.2 CS 及CKE 信号的设计..............................................................................1624.3 地址和控制线的设计...............................................................................1634.4 数据信号线的设计...................................................................................1664.5 电源,参考电压Vref 及去耦电容.........................................................169第五章 内存模块的功耗计算.............................................................................172第六章 实际设计案例分析.................................................................................178 目前比较流行的内存模块主要是这三种:SDR,DDR,RAMBUS。其中,RAMBUS内存采用阻抗受控制的串行连接技术,在这里我们将不做进一步探讨,本文所总结的内存设计技术就是针对SDRAM 而言(包括SDR 和DDR)。现在我们来简单地比较一下SDR 和DDR,它们都被称为同步动态内存,其核心技术是一样的。只是DDR 在某些功能上进行了改进,所以DDR 有时也被称为SDRAM II。DDR 的全称是Double Data Rate,也就是双倍的数据传输率,但是其时钟频率没有增加,只是在时钟的上升和下降沿都可以用来进行数据的读写操作。对于SDR 来说,市面上常见的模块主要有PC100/PC133/PC166,而相应的DDR内存则为DDR200(PC1600)/DDR266(PC2100)/DDR333(PC2700)。

    标签: DRAM 内存模块 设计技术

    上传时间: 2014-01-13

    上传用户:euroford

  • 89C52单片机模块

    模块结构框图和功能描述 模块结构框图如图:采用8位单片机89C52,时钟电路使用片内时钟振荡器,具有上电复位和手动按键复位功能,外接WDG复位电路。通过并行总线外扩了128KWSRM和64K的FLASHROM;串行扩展:通过RS-232连接了UART口;通过跳线器可选两个IO口来虚拟I2C总线,并外接带I2C总线的EEPROM和RTC。数据总线地址总线经总线驱动后引出到总线插槽与其他模块相连。模块的译码控制电路由一片CPLD来完成。

    标签: 89C52 单片机模块

    上传时间: 2013-11-11

    上传用户:maricle

  • Stellaris系列微控制器的时钟

    应用软件根据BYPASS信号的值来决定是否使用PLL。如果使用PLL,那么它总是输出一个200MHz的时钟信号,并且联合系统分频器(SYSDIV)共同产生系统时钟。馈送到PWM模块的时钟由系统时钟提供。如果应用中需要较低的PWM时钟,那么在时钟信号到达PWM模块前可以使用PWM分频器(PWMDIV)先分频。ADC时钟使用一个时钟源(source)为200MHz的常量分频器,这就意味着如果要使ADC时钟的工作频率保持在14-18MHz范围内,必须使能并使用PLL。

    标签: Stellaris 微控制器 时钟

    上传时间: 2013-10-17

    上传用户:hjshhyy

  • SM-IIC/2051模块用户说明(I2C 数据控制模块)

    SM-IIC/2051 模块用户说明简介:SM-IIC/2051 是一个基于2051 单片机的I2C 总线控制模块。上位机接口可直接与PC的RS232 连接,下位机可实现对应用电路中I2C 控制总线的连接,块内设置2K 的FLASH 存储器,可存储用户I2C 初始化数据。模块采用2051 单片机,使电路简单可靠。型号:SM-IIC/2051名称:I2C 数据控制模块功能:RS232 串行信号与I2C 数据转换 接口说明:编号信号标志信号名称规格备注CK1-1 VCC 供电+5VCK1-2 VCC 供电+5VCK1-3 GND 地GroundCK1-4 GND 地GroundCK2-1 TOUT 串口输出RS232CK2-2 RIN 串口输入RS232CK2-3 GND 地GroundCK2-4 GND 地Ground编号信号标志信号名称规格备注CK3-1 GND 地GroundCK3-2 SCL I2C 时钟TTLCK3-3 SDA I2C 数据TTLCK3-4 GND 地GroundCK3-5 P1.2 PI/O 端口TTLCK3-6 P1.3 PI/O 端口TTLCK3-7 P1.4 PI/O 端口TTLCK3-8 P1.5 PI/O 端口TTLCK3-9 P1.6 PI/O 端口TTLCK3-10 P1.7 PI/O 端口TTLCK3-11 P3.7 PI/O 端口TTLCK3-12 T1 定时端口TTLCK3-13 T0 定时端口TTLCK3-14 INT1 中断端口TTLCK3-15 INT0 中断端口TTLCK3-16 GND 地Ground

    标签: SM-IIC 2051 I2C 模块

    上传时间: 2013-11-18

    上传用户:爺的气质

  • Xilinx FPGA全局时钟资源的使用方法

    目前,大型设计一般推荐使用同步时序电路。同步时序电路基于时钟触发沿设计,对时钟的周期、占空比、延时和抖动提出了更高的要求。为了满足同步时序设计的要求,一般在FPGA设计中采用全局时钟资源驱动设计的主时钟,以达到最低的时钟抖动和延迟。 FPGA全局时钟资源一般使用全铜层工艺实现,并设计了专用时钟缓冲与驱动结构,从而使全局时钟到达芯片内部的所有可配置单元(CLB)、I/O单元 (IOB)和选择性块RAM(Block Select RAM)的时延和抖动都为最小。为了适应复杂设计的需要,Xilinx的FPGA中集成的专用时钟资源与数字延迟锁相环(DLL)的数目不断增加,最新的 Virtex II器件最多可以提供16个全局时钟输入端口和8个数字时钟管理模块(DCM)。与全局时钟资源相关的原语常用的与全局时钟资源相关的Xilinx器件原语包括:IBUFG、IBUFGDS、BUFG、BUFGP、BUFGCE、 BUFGMUX、BUFGDLL和DCM等,如图1所示。  

    标签: Xilinx FPGA 全局时钟资源

    上传时间: 2014-01-01

    上传用户:maqianfeng