虫虫首页|资源下载|资源专辑|精品软件
登录|注册

处理结构

  • 是一个数据处理结构中关于链表的建立 几基本操作的程序

    是一个数据处理结构中关于链表的建立 几基本操作的程序

    标签: 数据 处理结构 基本操作 程序

    上传时间: 2013-12-18

    上传用户:youmo81

  • 基于FPGA的数字中频处理技术研究

    软件无线电是无线电领域研究的热点。现阶段限于硬件的发展水平,大多采用宽带中频带通采样数字化结构,数字中频技术就成为实现该结构的关键技术。目前FPGA器件在数字信号处理技术的实现方面发挥着越来越重要的作用。本文目的正是要把这两者相结合,使数字中频处理在FPGA中得到实现,满足具体的应用要求。 首先,对软件无线电体系和数字中频处理结构进行了研究;其次,在信号采样理论、多速率数字信号处理理论、滤波器设计理论、FPGA硬件数字算法等理论的基础上,结合本文的应用需要,提出了适合于FPGA实现的数字化中频处理的系统方案:采用多相结构来高效的实现抽取,并用FIR滤波器作为低通抗混叠滤波器来实现6倍抽取的抗混叠滤波。对系统进行了Matlab仿真,以验证系统方案的可行性。再次,具体通过Vefilog编程在FPGA中硬件实现该数字中频系统。其中包括混频器模块、抽取滤波器模块、信号产生器模块。 最后对该系统进行了软件仿真和硬件功能验证,结果表明数字中频系统性能达到了设计要求。

    标签: FPGA 数字中频处理 技术研究

    上传时间: 2013-07-26

    上传用户:zhouli

  • 提出了利用FPGA的现场可编程以及可并行处理的特性

    提出了利用FPGA的现场可编程以及可并行处理的特性,对基于人工神经网络的图像处理结构进行自动生成的一种技术。作者:Andre B. Soares, Altamiro A. Susin,Leticia V. Guimaraes

    标签: FPGA 现场可编程 并行处理

    上传时间: 2016-04-14

    上传用户:gxf2016

  • 实验12 异常处理 12.1 实验目的 (1)掌握异常处理的编程特点。 (2)了解Java异常分类层次

    实验12 异常处理 12.1 实验目的 (1)掌握异常处理的编程特点。 (2)了解Java异常分类层次,常见系统异常。 (3)了解自定义异常的定义及方法异常的抛出与处理。 12.2 知识要点 Java把异常加入Java语言的体系结构,为异常定义了类和关键字,简化了错误处理代码。将错误处理从正常的控制流中分离出来,对错误实施统一处理。 12.2.1异常处理结构 try { 语句块; } catch (异常类名1 参变量名) { 语句块; } catch (异常类名2 参变量名) { 语句块; } finally { 语句块; } 说明: (1)finally总是执行,它是异常处理的统一出口,常用来实现资源释放,文件关闭等。 (2)发生异常时try块内的后续语句不再执行; (3)catch按照次序进行匹配检查处理,找到一个匹配者,不再找其它;catch的排列要按照先个别化再一般化的次序。不能将父类异常排在前、子类异常排在后。 12.2.2 常见系统异常 常见系统异常如表12-1所示。 表12-1 常见系统异常

    标签: 12.1 Java 实验 异常处理

    上传时间: 2013-12-09

    上传用户:jhksyghr

  • DVB系统中RS编解码器的FPGA实现

    该论文讨论如何采用一种串行无逆的Berlekamp-Massey(BM)算法,设计应用于DVB系统中的RS(204,188)信道编码/解码电路,并通过FPGA的验证.RS解码器的设计采用无逆BM算法,并利用串行方式来实现,不仅避免了求逆运算,而且只需用3个有限域乘法器就可以实现,大大的降低了硬件实现的复杂度,并且因为在硬件实现上,采用了3级流水线(pipe-line)的处理结构.RS编码器的设计中,利用有限域常数乘法器的特性对编码电路进行优化.这些技术的采用大大的提高了RS编/解码器的效率,节省了RS编/解码器所占用资源.

    标签: FPGA DVB RS编解码

    上传时间: 2013-08-04

    上传用户:BOBOniu

  • IEEE 802.11信道编解码及交织解交织的FPGA实现

    随着纠错编码理论研究的不断深入,纠错码的实际应用越来越广泛。卷积码作为其中重要的一种,已被大多数通信系统所采用。(2,1,7)卷积码是一种短约束长度最佳码,编、译码器易于实现,且具有较强的纠错能力。 本文研究了IEEE 802.11协议中(2,1,7)卷积码编码、交织解交织及其软判决高速Viterbi译码的实现问题。 首先介绍了IEEE 802.11无线局域网标准及规范,然后介绍了信道编解码中卷积码编码及Viterbi译码算法和FPGA 设计方法,接着通过对(2,1,7)卷积码特点的具体分析,吸取目前Viterbi译码算法和交织解交织算法的优点,采取一系列的改进措施,基于FPGA实现了IEEE 802.11信道编解码及交织和解交织系统。这些改进措施包括采用并行FIFO、改进的ACS 单元、流水式块处理结构、改进的SMDO方法、双重交织策略,使得在同样时钟速率下,系统的性能大幅度提高。最后将程序下载到Altera公司的Cyclone 系列的FPGA(型号EP1C6Q240C8)器件上进测试,并对测试结果作了简单分析。

    标签: 802.11 IEEE FPGA 信道

    上传时间: 2013-05-24

    上传用户:00.00

  • 基于FPGA实现可扩展高速FFT处理器的研究

    DFT(离散傅立叶变换)作为将信号从时域转换到频域的基本运算,在各种数字信号处理中起着核心作用

    标签: FPGA FFT 扩展 处理器

    上传时间: 2013-08-03

    上传用户:wangdean1101

  • 基于FPGA的谐波分析仪

    随着各种非线性电力电子设备的大量应用,电网中的谐波污染日益严重。为了保证电力系统的安全经济运行,保证电气设备和用电人员的安全,治理电磁环境污染、维护绿色环境,研究实时、准确的电力谐波分析系统,对电网中的谐波进行实时检测、分析和监控,都具有重要的理论和工程实际意义。 目前实际应用的电力谐波分析系统大多是以单片机为核心组成。单片机运行速度慢,实时性较差,不能满足实际应用中对系统实时性越来越高的要求。另外,单片机的地址线和数据线位数较少,这使得由单片机构成的电力谐波分析系统外围电路庞大,系统的可靠性和可维护性上都大打折扣。 本文首先研究了电力谐波的产生,危害及国内外研究现状,对电力谐波检测中常用的各种算法进行分析和比较;然后介绍了FPGA芯片的特性和SOPC系统的特点,并分析比较了传统测量谐波装置和基于FPGA的新型谐波测量仪器的特性。综述了可编程元器件的发展过程、主要工艺发展及目前的应用情况。 然后,对整个谐波处理器系统的框架及结构进行描述,包括系统的功能结构分配,外围硬件电路的结构及软件设计流程。其后,针对系统外围硬件电路、FFTIP核设计和SOPC系统的组建,进行详细的分析与设计。系统采用NiosⅡ处理器核和FFT运算协处理器相结合的结构。FFT运算用专门的FFT运算协处理器核完成,使得系统克服的单片机系统实时性差和速度慢的缺点。FFTIP核采用现在ASIC领域的一种主流硬件描述语言VHDL进行编写,采用顺序的处理结构和IEEE浮点标准运算,具有系统简单、占用硬件资源少和高运算精度的优点。谐波分析仪系统组建采用SOPC系统。SOPC系统具有可对硬件剪裁和添加的特点,使得系统的更简单,应用面更广,专用性更强的优点。最后,给出了对系统中各模块进行仿真及系统生成的结果。

    标签: FPGA 谐波分析仪

    上传时间: 2013-04-24

    上传用户:cy_ewhat

  • C语言基础教材

    目录 C语言基础知识  C 语言简介  C 语言的特点…  C 语言的发展和标准化…数据类型、运算、表达式和编译预处理  数据类型…  基本类型与数据表示  整数类型和整数的表示…  实数类型和实数的表示…  字符类型和字符的表示…  运算符、表达式与计算…  算术运算符  算术表达式  表达式的求值…  变量——概念、定义和使用…  变量的定义0  变量的使用:取值与赋值  预处理  文件包含命令…  宏定义与宏替换…逻辑判断与运算…   关系运算和逻辑运算  复杂条件的描述0  i f语句循环控制  whi le语句  for语句…  循环程序常用的若干机制  增量和减量运算符(++、--)  逗号运算符  控制结构和控制语句  do-while循环结构…  流程控制语句…  goto语句…  开关语句…函数  概述…  函数定义和程序的函数分解…  函数定义…  函数调用…数组  数组的概念、定义和使用  数组变量定义…  数组的使用  数组的初始化…结构  结构(struct)  结构说明与变量定义  结构变量的初始化和使用  结构与函数  处理结构的函数0指针  指针的概念  指针操作…  指针作为函数的参数  与指针有关的一些问题…  指针与数组  指向数组元素的指针  基于指针运算的数组程序设计  数组参数与指针  字符指针与字符数组0

    标签: C语言 教材

    上传时间: 2013-11-16

    上传用户:asdkin

  • :在FPGA 上实现了对高频窄带数字信号的下变频和取样率转换

    :在FPGA 上实现了对高频窄带数字信号的下变频和取样率转换,由于完全避免了需要大量逻辑资源的乘法 器和数字振荡器,其结构大为简化,再加上采用了流水处理结构,使其处理速度超过100M 样点每秒,此外它还具有 结构简单,重配置能力强的优点,具有广阔的应用前景

    标签: FPGA 高频 窄带 数字信号

    上传时间: 2014-01-17

    上传用户:tonyshao