* 本算法用最小二乘法依据指定的M个基函数及N个已知数据进行曲线拟和 * 输入: m--已知数据点的个数M * f--M维基函数向量 * n--已知数据点的个数N-1 * x--已知数
* 本算法用最小二乘法依据指定的M个基函数及N个已知数据进行曲线拟和 * 输入: m--已知数据点的个数M * f--M维基函数向量 * n--已知数据点的个数N-1 * x--已知数据点第一坐标的N维列向量 * y--已知数据点第二坐标的N维列向量 * a--无用 * ...
* 本算法用最小二乘法依据指定的M个基函数及N个已知数据进行曲线拟和 * 输入: m--已知数据点的个数M * f--M维基函数向量 * n--已知数据点的个数N-1 * x--已知数据点第一坐标的N维列向量 * y--已知数据点第二坐标的N维列向量 * a--无用 * ...
* 用牛顿插值法依据N个已知数据点即使函数值 * 输入: n--已知数据点的个数N-1 * x--已知数据点第一坐标的N维列向量 * y--已知数据点第二坐标的N维列向量 * xx-插值点第一坐标 * 输出: 函数返回值所求插值点的第二坐标...
* 用拉格朗日插值法依据N个已知数据点即使函数值 * 输入: n--已知数据点的个数N-1 * x--已知数据点第一坐标的N维列向量 * y--已知数据点第二坐标的N维列向量 * xx-插值点第一坐标 * 输出: 函数返回值所求插值点的第二坐标...
* 用埃特金插值法依据N个已知数据点计算函数值 * 输入: n--已知数据点的个数N-1 * x--已知数据点第一坐标的N维列向量 * y--已知数据点第二坐标的N维列向量 * xx-插值点第一坐标 * eps--求解精度 * 输出: 函数返回值所求插值点的第二坐标...
* 用改进的欧拉方法求解初值问题,其中一阶微分方程未y =f(x,y) * 初始条件为x=x[0]时,y=y[0]. * 输入: f--函数f(x,y)的指针 * x--自变量离散值数组(其中x[0]为初始条件) * y--对应于自变量离散值的函数值数组(其中y[0]为初始条件) ...