虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

smaller

  • 基于PIC16LF874单片机的电容测量模块

    为提高电容测量精度,针对电容式传感器的工作原理设计了基于PIC16LF874单片机电容测量模块。简单阐述了电容测量电路的应用背景和国内外研究现状,介绍了美国Microchip公司PIC16LF874单片机的特性。电容式传感器输出的动态微弱电容信号通过PS021型电容数字转换器把模拟量数据转换成数字量数据,所测数据由PIC16LF874单片机应用程序进行处理、显示和保存。实验结果表明,固定电容标称值为10~20 pF 的测量值相对误差在1%以内,同时也可知被测电容容值越大,测量值和标称值相对误差越小。 Abstract:  To improve the accuracy of capacitance measurement,aimed at the principle of work of mercury capacitance acceleration transducer,the design of micro capacitance measurement circuit is based on the key PIC16LF874 chip. Briefly discusses the application of the capacitance measuring circuit for the background and status of foreign researchers,focusing on the United States PIC16LF874 microcontroller features. Capacitive sensor outputed signal through the dynamics of weak PS021-chip capacitors (capacitancedigital converter) to convert analog data into digital data,the measured data from the PIC16LF874 microcontroller application process, display and preservation. Experimental results show that the fixed capacitor 10pF ~ 20pF nominal value of the measured value of relative error is within 1%,but also it canbe seen the value of the measured capacitance larger,measuring value and the nominal value of relative error smaller.

    标签: PIC 874 16 LF

    上传时间: 2013-10-29

    上传用户:wojiaohs

  • PCA9534—带中断的低功耗8位I2C和SMBus IO口

    The PCA9534 is a 16-pin CMOS device that provide 8 bits of General Purpose parallel Input/Output (GPIO) expansion for I2C-bus/SMBus applications and was developed to enhance the NXP Semiconductors family of I2C-bus I/O expanders. The improvements include higher drive capability, 5 V I/O tolerance, lower supply current, individual I/O configuration, 400 kHz clock frequency, and smaller packaging. I/O expanders provide a simple solution when additional I/O is needed for ACPI power switches, sensors, push buttons, LEDs, fans, etc.

    标签: SMBus 9534 PCA I2C

    上传时间: 2013-11-17

    上传用户:vodssv

  • PCA9534 8bit I2C bus and SMBus low power IO port with interru

    The PCA9534 is a 16-pin CMOS device that provide 8 bits of General Purpose parallel Input/Output (GPIO) expansion for I2C-bus/SMBus applications and was developed to enhance the NXP Semiconductors family of I2C-bus I/O expanders. The improvements include higher drive capability, 5 V I/O tolerance, lower supply current, individual I/O configuration, 400 kHz clock frequency, and smaller packaging. I/O expanders provide a simple solution when additional I/O is needed for ACPI power switches, sensors, push buttons, LEDs, fans, etc.

    标签: interru SMBus power 9534

    上传时间: 2013-10-10

    上传用户:inwins

  • PCA9535 PCA9535C 16bit I2C bus

    The PCA9535 and PCA9535C are 24-pin CMOS devices that provide 16 bits of GeneralPurpose parallel Input/Output (GPIO) expansion for I2C-bus/SMBus applications and wasdeveloped to enhance the NXP Semiconductors family of I2C-bus I/O expanders. Theimprovements include higher drive capability, 5 V I/O tolerance, lower supply current,individual I/O configuration, and smaller packaging. I/O expanders provide a simplesolution when additional I/O is needed for ACPI power switches, sensors, push buttons,LEDs, fans, etc.

    标签: 9535 PCA 9535C I2C

    上传时间: 2013-10-21

    上传用户:爱死爱死

  • PCA9555 16bit I2C-bus and SMBu

    The PCA9555 is a 24-pin CMOS device that provides 16 bits of General Purpose parallelInput/Output (GPIO) expansion for I2C-bus/SMBus applications and was developed toenhance the NXP Semiconductors family of I2C-bus I/O expanders. The improvementsinclude higher drive capability, 5 V I/O tolerance, lower supply current, individual I/Oconfiguration, and smaller packaging. I/O expanders provide a simple solution whenadditional I/O is needed for ACPI power switches, sensors, push buttons, LEDs, fans, etc.The PCA9555 consists of two 8-bit Configuration (Input or Output selection); Input, Outputand Polarity Inversion (active HIGH or active LOW operation) registers. The systemmaster can enable the I/Os as either inputs or outputs by writing to the I/O configurationbits. The data for each Input or Output is kept in the corresponding Input or Outputregister. The polarity of the read register can be inverted with the Polarity Inversionregister. All registers can be read by the system master. Although pin-to-pin and I2C-busaddress compatible with the PCF8575, software changes are required due to theenhancements, and are discussed in Application Note AN469.

    标签: C-bus 9555 SMBu PCA

    上传时间: 2013-11-13

    上传用户:fredguo

  • 基于PIC单片机的低功耗读卡器硬件设计

    基于PIC单片机的低功耗读卡器硬件设计:本文提出了一个完整的基于串口的智能读卡器子系统设计方案并将其实现。读卡器的设计突出了小型化的要求,全部器件使用贴片封装。为了减小读卡器的体积,设计中还使用了串口窃电的技术,使用串口信号线直接给读卡器供电。为此,读卡器使用了省电的设计,采用了省电的集成电路,并大胆简化了许多传统的设计电路。关键字: 读卡器, 单片机, 串口窃电 Abstract: This paper aims to put forward a complete design of Smart IC card reader based onSerial Port and propose the way of realizing it for the purpose of Network Security. SMD isadopted to make Smart IC reader smaller in this design. To reduce the volume of Smart ICreader, Serial Port powered technology is employed to get power from the signal line of Serial Port. For this reason, low-power consumption components are adopted in the design and some traditional designs are simplified to reduce the power consumption.Keywords: Card Reader; Single-chip Computer; Serial Port Powered IC 卡系统保存了加密算法所需要的工作密钥,供加密算法对网络上传输的数据加密使用,是整个系统网络安全的核心。在IC 卡子系统中,读卡器是一个重要的部分。它起着管理IC卡、在IC 卡和PC或网络计算机间传递数据的重要作用。本文以一片PIC单片机为核心完成了基于RS232 串口的读卡器的硬件设计。

    标签: PIC 单片机 低功耗 读卡器

    上传时间: 2014-04-14

    上传用户:wanghui2438

  • Xilinx UltraScale:新一代架构满足您的新一代架构需求(EN)

      中文版详情浏览:http://www.elecfans.com/emb/fpga/20130715324029.html   Xilinx UltraScale:The Next-Generation Architecture for Your Next-Generation Architecture    The Xilinx® UltraScale™ architecture delivers unprecedented levels of integration and capability with ASIC-class system- level performance for the most demanding applications.   The UltraScale architecture is the industr y's f irst application of leading-edge ASIC architectural enhancements in an All Programmable architecture that scales from 20 nm planar through 16 nm FinFET technologies and beyond, in addition to scaling from monolithic through 3D ICs. Through analytical co-optimization with the X ilinx V ivado® Design Suite, the UltraScale architecture provides massive routing capacity while intelligently resolving typical bottlenecks in ways never before possible. This design synergy achieves greater than 90% utilization with no performance degradation.   Some of the UltraScale architecture breakthroughs include:   • Strategic placement (virtually anywhere on the die) of ASIC-like system clocks, reducing clock skew by up to 50%    • Latency-producing pipelining is virtually unnecessary in systems with massively parallel bus architecture, increasing system speed and capability   • Potential timing-closure problems and interconnect bottlenecks are eliminated, even in systems requiring 90% or more resource utilization   • 3D IC integration makes it possible to build larger devices one process generation ahead of the current industr y standard    • Greatly increased system performance, including multi-gigabit serial transceivers, I/O, and memor y bandwidth is available within even smaller system power budgets   • Greatly enhanced DSP and packet handling   The Xilinx UltraScale architecture opens up whole new dimensions for designers of ultra-high-capacity solutions.

    标签: UltraScale Xilinx 架构

    上传时间: 2013-11-13

    上传用户:瓦力瓦力hong

  • Xilinx UltraScale:新一代架构满足您的新一代架构需求(EN)

      中文版详情浏览:http://www.elecfans.com/emb/fpga/20130715324029.html   Xilinx UltraScale:The Next-Generation Architecture for Your Next-Generation Architecture    The Xilinx® UltraScale™ architecture delivers unprecedented levels of integration and capability with ASIC-class system- level performance for the most demanding applications.   The UltraScale architecture is the industr y's f irst application of leading-edge ASIC architectural enhancements in an All Programmable architecture that scales from 20 nm planar through 16 nm FinFET technologies and beyond, in addition to scaling from monolithic through 3D ICs. Through analytical co-optimization with the X ilinx V ivado® Design Suite, the UltraScale architecture provides massive routing capacity while intelligently resolving typical bottlenecks in ways never before possible. This design synergy achieves greater than 90% utilization with no performance degradation.   Some of the UltraScale architecture breakthroughs include:   • Strategic placement (virtually anywhere on the die) of ASIC-like system clocks, reducing clock skew by up to 50%    • Latency-producing pipelining is virtually unnecessary in systems with massively parallel bus architecture, increasing system speed and capability   • Potential timing-closure problems and interconnect bottlenecks are eliminated, even in systems requiring 90% or more resource utilization   • 3D IC integration makes it possible to build larger devices one process generation ahead of the current industr y standard    • Greatly increased system performance, including multi-gigabit serial transceivers, I/O, and memor y bandwidth is available within even smaller system power budgets   • Greatly enhanced DSP and packet handling   The Xilinx UltraScale architecture opens up whole new dimensions for designers of ultra-high-capacity solutions.

    标签: UltraScale Xilinx 架构

    上传时间: 2013-11-21

    上传用户:wxqman

  • This version of the code is compatible only with the AT89C2051 due to the location of the data buf

    This version of the code is compatible only with the AT89C2051 due to the location of the data buffer and stack in RAM. The code may be modified to work with the AT89C1051 by relocating or resizing the buffer and stack to fit into the smaller amount of RAM available in the AT89C1051.

    标签: the compatible location version

    上传时间: 2015-04-05

    上传用户:changeboy

  • This document describes the uIP TCP/IP stack. The uIP TCP/IP stack is an extremely small implementat

    This document describes the uIP TCP/IP stack. The uIP TCP/IP stack is an extremely small implementation of the TCP/IP protocol suite intended for embedded systems running low-end 8 or 16-bit microcon-trollers. The code size and RAM requirements of uIP is an order of magnitude smaller than other generic TCP/IP stacks today.

    标签: stack implementat TCP describes

    上传时间: 2015-09-18

    上传用户:zsjinju