private double PointToAngle(Point AOrigin, Point APoint) { if (APoint.X == AOrigin.X) if (APoint.Y > AOrigin.Y) return Math.PI * 0.5f else return Math.PI * 1.5f else if (APoint.Y == AOrigin.Y) if (APoint.X > AOrigin.X) return 0 else return Math.PI else {
标签: AOrigin APoint Point PointToAngle
上传时间: 2013-12-18
上传用户:rocketrevenge
For solving the following problem: "There is No Free Lunch" Time Limit: 1 Second Memory Limit: 32768 KB One day, CYJJ found an interesting piece of commercial from newspaper: the Cyber-restaurant was offering a kind of "Lunch Special" which was said that one could "buy one get two for free". That is, if you buy one of the dishes on their menu, denoted by di with price pi , you may get the two neighboring dishes di-1 and di+1 for free! If you pick up d1, then you may get d2 and the last one dn for free, and if you choose the last one dn, you may get dn-1 and d1 for free. However, after investigation CYJJ realized that there was no free lunch at all. The price pi of the i-th dish was actually calculated by adding up twice the cost ci of the dish and half of the costs of the two "free" dishes. Now given all the prices on the menu, you are asked to help CYJJ find the cost of each of the dishes.
标签: Limit following solving problem
上传时间: 2014-01-12
上传用户:362279997
it is a simulation about ML synchronization algorithm in OFDM systems,you can slao see a function picture in its output,that s useful for a beginner
标签: synchronization simulation algorithm function
上传时间: 2013-12-17
上传用户:yulg
Euler函数: m = p1^r1 * p2^r2 * …… * pn^rn ai >= 1 , 1 <= i <= n Euler函数: 定义:phi(m) 表示小于等于m并且与m互质的正整数的个数。 phi(m) = p1^(r1-1)*(p1-1) * p2^(r2-1)*(p2-1) * …… * pn^(rn-1)*(pn-1) = m*(1 - 1/p1)*(1 - 1/p2)*……*(1 - 1/pn) = p1^(r1-1)*p2^(r2-1)* …… * pn^(rn-1)*phi(p1*p2*……*pn) 定理:若(a , m) = 1 则有 a^phi(m) = 1 (mod m) 即a^phi(m) - 1 整出m 在实际代码中可以用类似素数筛法求出 for (i = 1 i < MAXN i++) phi[i] = i for (i = 2 i < MAXN i++) if (phi[i] == i) { for (j = i j < MAXN j += i) { phi[j] /= i phi[j] *= i - 1 } } 容斥原理:定义phi(p) 为比p小的与p互素的数的个数 设n的素因子有p1, p2, p3, … pk 包含p1, p2…的个数为n/p1, n/p2… 包含p1*p2, p2*p3…的个数为n/(p1*p2)… phi(n) = n - sigm_[i = 1](n/pi) + sigm_[i!=j](n/(pi*pj)) - …… +- n/(p1*p2……pk) = n*(1 - 1/p1)*(1 - 1/p2)*……*(1 - 1/pk)
上传时间: 2014-01-10
上传用户:wkchong
计算全息close all clc clear A=zeros(64) A(15:20,20:40)=1 A(15:50,20:25)=1 A(45:50,20:40)=1 A(30:34,20:35)=1 % ppp=exp(rand(64)*pi*2*i) A=A.*ppp % Author s email: zjliu2001@163.com figure imshow(abs(A),[]) Fa=fft2(fftshift(A)) Fs=fftshift(Fa) Am=abs(Fs) % amplitude Ph=angle(Fs) % phase s=11 % 这表示边长吗? cgh=zeros(64*s) th=max(max(abs(Fs)))
上传时间: 2014-10-13
上传用户:wweqas
// 入口参数: // l: l = 0, 傅立叶变换 l = 1, 逆傅立叶变换 // il: il = 0,不计算傅立叶变换或逆变换模和幅角;il = 1,计算模和幅角 // n: 输入的点数,为偶数,一般为32,64,128,...,1024等 // k: 满足n=2^k(k>0),实质上k是n个采样数据可以分解为偶次幂和奇次幂的次数 // pr[]: l=0时,存放N点采样数据的实部 // l=1时, 存放傅立叶变换的N个实部 // pi[]: l=0时,存放N点采样数据的虚部 // l=1时, 存放傅立叶变换的N个虚部 // // 出口参数: // fr[]: l=0, 返回傅立叶变换的实部 // l=1, 返回逆傅立叶变换的实部 // fi[]: l=0, 返回傅立叶变换的虚部 // l=1, 返回逆傅立叶变换的虚部 // pr[]: il = 1,i = 0 时,返回傅立叶变换的模 // il = 1,i = 1 时,返回逆傅立叶变换的模 // pi[]: il = 1,i = 0 时,返回傅立叶变换的辐角 // il = 1,i = 1 时,返回逆傅立叶变换的辐角
上传时间: 2017-01-03
上传用户:ynsnjs
OFDM的发射端,包括pi/4DQPSK的调制,ifft,加帧头以及组帧
上传时间: 2013-12-26
上传用户:stvnash
The concept of the Altera Nios II embedded processor implementation inside Field Programmable Gate Array [FPGA] of the CCD camera for the “Pi of the Sky” experiment is presented. The digital board of the CCD camera, its most important components, current implementation of firmware [VHDL] inside the FPGA and the role of external 8051 microcontroller is briefly described. The main goal of the presented work is to get rid of the external microcontroller and to design new system with Nios II processor built inside FPGA chip. Constraints for implementing the design into the existing camera boards are discussed. New possibilities offered by a larger FPGA for next generation of cameras are considered.
标签: implementation Programmable processor embedded
上传时间: 2014-01-02
上传用户:dyctj
本程序用于检测音频文件中是否具有DTMF信号,若有则将其检出。 程序首先使用Goertzel算法求出以FRAMESIZE(默认200)为大小的一帧数据在8个DTMF频点上的能量。 对Goertzel算法的改进,对于系数的计算不是采用2*cos[2*pi*k/N],而是采用2*cos[2*pi*fn/fs],这样能够降低误差。 确定了8个频点的能量后运用一系列判决门限来确定有没有DTMF信号,以及信号是什么。
上传时间: 2017-03-15
上传用户:wyc199288
利用布丰投针的思想,用数值随机算法估计计算PI的值。
标签:
上传时间: 2017-03-23
上传用户:llandlu