(1 . Higher Educati on Admissi on Committee Office of L ianyungang,L ianyungang 222006, China 2 . Modern Educati on Technique Center, Huaihai I nstitute of Technol ogy, L ianyungang 222005, China) Abstract: The outbreak ofARP cheating virus interferes with the nor mal functi oning of LAN. On the basis of thoroughly und standing of the p rinci p les, this paper analyzes the p rinci p les, pattern and classificati ons ofARP in details . And it also discu the tactics t o take strict p recauti ons ofARP fr om t wo sides— — —the administrati on ofLAN and Client Host . The pur pose of the cussi on is t o guarantee the normal running of LAN users . Key words: virus p rinci p les LAN client host
标签: ianyungang Committee Educati Admissi
上传时间: 2013-12-23
上传用户:zhangyigenius
% Train a two layer neural network with the Levenberg-Marquardt % method. % % If desired, it is possible to use regularization by % weight decay. Also pruned (ie. not fully connected) networks can % be trained. % % Given a set of corresponding input-output pairs and an initial % network, % [W1,W2,critvec,iteration,lambda]=marq(NetDef,W1,W2,PHI,Y,trparms) % trains the network with the Levenberg-Marquardt method. % % The activation functions can be either linear or tanh. The % network architecture is defined by the matrix NetDef which % has two rows. The first row specifies the hidden layer and the % second row specifies the output layer.
标签: Levenberg-Marquardt desired network neural
上传时间: 2016-12-27
上传用户:jcljkh
1、 采用原始变量法,即以速度U、V及压力P作为直接求解的变量 2、 守恒型的差分格式,离散方程系对守恒型的控制方程通过对控制容积作积分而得出的,无论网格疏密程度如何,均满足在计算区域内守恒的条件; 3、 采用区域离散化方法B,即先定控制体界面、再定节点位置 4、 采用交叉网格,速度U、V与其他变量分别存储于三套网格系统中; 5、 不同的项在空间离散化过程中去不同的型线假设,源项采用局部线性化方法;扩散——对流项采用乘方格式(但很容易转化为中心差分、迎风差分或混合格式);街面上的扩散系数采用调和平均法,而密度与流速则用线性插值; 6、 不稳态问题采用全隐格式,以保证在任何时间步长下均可获得具有物理意义的解; 7、 边界条件采用附加源项法处理; 8、 耦合的流速与压力采用SIMPLE算法来求解; 9、 迭代式的求解方法,对非线性问题,整个求解过程具有迭代性质;对于代数方程也采用迭代法求解; 10、 采用交替方向先迭代法求解代数方程并补以块修正技术以促进收敛。
标签: 变量
上传时间: 2013-12-18
上传用户:时代电子小智
1、 采用原始变量法,即以速度U、V及压力P作为直接求解的变量 2、 守恒型的差分格式,离散方程系对守恒型的控制方程通过对控制容积作积分而得出的,无论网格疏密程度如何,均满足在计算区域内守恒的条件; 3、 采用区域离散化方法B,即先定控制体界面、再定节点位置 4、 采用交叉网格,速度U、V与其他变量分别存储于三套网格系统中; 5、 不同的项在空间离散化过程中去不同的型线假设,源项采用局部线性化方法;扩散——对流项采用乘方格式(但很容易转化为中心差分、迎风差分或混合格式);街面上的扩散系数采用调和平均法,而密度与流速则用线性插值; 6、 不稳态问题采用全隐格式,以保证在任何时间步长下均可获得具有物理意义的解; 7、 边界条件采用附加源项法处理; 8、 耦合的流速与压力采用SIMPLE算法来求解; 9、 迭代式的求解方法,对非线性问题,整个求解过程具有迭代性质;对于代数方程也采用迭代法求解; 10、 采用交替方向先迭代法求解代数方程并补以块修正技术以促进收敛。
标签: 变量
上传时间: 2013-12-13
上传用户:qlpqlq
1、 采用原始变量法,即以速度U、V及压力P作为直接求解的变量 2、 守恒型的差分格式,离散方程系对守恒型的控制方程通过对控制容积作积分而得出的,无论网格疏密程度如何,均满足在计算区域内守恒的条件; 3、 采用区域离散化方法B,即先定控制体界面、再定节点位置 4、 采用交叉网格,速度U、V与其他变量分别存储于三套网格系统中; 5、 不同的项在空间离散化过程中去不同的型线假设,源项采用局部线性化方法;扩散——对流项采用乘方格式(但很容易转化为中心差分、迎风差分或混合格式);街面上的扩散系数采用调和平均法,而密度与流速则用线性插值; 6、 不稳态问题采用全隐格式,以保证在任何时间步长下均可获得具有物理意义的解; 7、 边界条件采用附加源项法处理; 8、 耦合的流速与压力采用SIMPLE算法来求解; 9、 迭代式的求解方法,对非线性问题,整个求解过程具有迭代性质;对于代数方程也采用迭代法求解; 10、 采用交替方向先迭代法求解代数方程并补以块修正技术以促进收敛。
标签: 变量
上传时间: 2016-12-28
上传用户:wab1981
1、 采用原始变量法,即以速度U、V及压力P作为直接求解的变量 2、 守恒型的差分格式,离散方程系对守恒型的控制方程通过对控制容积作积分而得出的,无论网格疏密程度如何,均满足在计算区域内守恒的条件; 3、 采用区域离散化方法B,即先定控制体界面、再定节点位置 4、 采用交叉网格,速度U、V与其他变量分别存储于三套网格系统中; 5、 不同的项在空间离散化过程中去不同的型线假设,源项采用局部线性化方法;扩散——对流项采用乘方格式(但很容易转化为中心差分、迎风差分或混合格式);街面上的扩散系数采用调和平均法,而密度与流速则用线性插值; 6、 不稳态问题采用全隐格式,以保证在任何时间步长下均可获得具有物理意义的解; 7、 边界条件采用附加源项法处理; 8、 耦合的流速与压力采用SIMPLE算法来求解; 9、 迭代式的求解方法,对非线性问题,整个求解过程具有迭代性质;对于代数方程也采用迭代法求解; 10、 采用交替方向先迭代法求解代数方程并补以块修正技术以促进收敛。
标签: 变量
上传时间: 2013-11-25
上传用户:wcl168881111111
1、 采用原始变量法,即以速度U、V及压力P作为直接求解的变量 2、 守恒型的差分格式,离散方程系对守恒型的控制方程通过对控制容积作积分而得出的,无论网格疏密程度如何,均满足在计算区域内守恒的条件; 3、 采用区域离散化方法B,即先定控制体界面、再定节点位置 4、 采用交叉网格,速度U、V与其他变量分别存储于三套网格系统中; 5、 不同的项在空间离散化过程中去不同的型线假设,源项采用局部线性化方法;扩散——对流项采用乘方格式(但很容易转化为中心差分、迎风差分或混合格式);街面上的扩散系数采用调和平均法,而密度与流速则用线性插值; 6、 不稳态问题采用全隐格式,以保证在任何时间步长下均可获得具有物理意义的解; 7、 边界条件采用附加源项法处理; 8、 耦合的流速与压力采用SIMPLE算法来求解; 9、 迭代式的求解方法,对非线性问题,整个求解过程具有迭代性质;对于代数方程也采用迭代法求解; 10、 采用交替方向先迭代法求解代数方程并补以块修正技术以促进收敛。
标签: 变量
上传时间: 2016-12-28
上传用户:heart520beat
1、 采用原始变量法,即以速度U、V及压力P作为直接求解的变量 2、 守恒型的差分格式,离散方程系对守恒型的控制方程通过对控制容积作积分而得出的,无论网格疏密程度如何,均满足在计算区域内守恒的条件; 3、 采用区域离散化方法B,即先定控制体界面、再定节点位置 4、 采用交叉网格,速度U、V与其他变量分别存储于三套网格系统中; 5、 不同的项在空间离散化过程中去不同的型线假设,源项采用局部线性化方法;扩散——对流项采用乘方格式(但很容易转化为中心差分、迎风差分或混合格式);街面上的扩散系数采用调和平均法,而密度与流速则用线性插值; 6、 不稳态问题采用全隐格式,以保证在任何时间步长下均可获得具有物理意义的解; 7、 边界条件采用附加源项法处理; 8、 耦合的流速与压力采用SIMPLE算法来求解; 9、 迭代式的求解方法,对非线性问题,整个求解过程具有迭代性质;对于代数方程也采用迭代法求解; 10、 采用交替方向先迭代法求解代数方程并补以块修正技术以促进收敛。
标签: 变量
上传时间: 2013-12-28
上传用户:Avoid98
Euler函数: m = p1^r1 * p2^r2 * …… * pn^rn ai >= 1 , 1 <= i <= n Euler函数: 定义:phi(m) 表示小于等于m并且与m互质的正整数的个数。 phi(m) = p1^(r1-1)*(p1-1) * p2^(r2-1)*(p2-1) * …… * pn^(rn-1)*(pn-1) = m*(1 - 1/p1)*(1 - 1/p2)*……*(1 - 1/pn) = p1^(r1-1)*p2^(r2-1)* …… * pn^(rn-1)*phi(p1*p2*……*pn) 定理:若(a , m) = 1 则有 a^phi(m) = 1 (mod m) 即a^phi(m) - 1 整出m 在实际代码中可以用类似素数筛法求出 for (i = 1 i < MAXN i++) phi[i] = i for (i = 2 i < MAXN i++) if (phi[i] == i) { for (j = i j < MAXN j += i) { phi[j] /= i phi[j] *= i - 1 } } 容斥原理:定义phi(p) 为比p小的与p互素的数的个数 设n的素因子有p1, p2, p3, … pk 包含p1, p2…的个数为n/p1, n/p2… 包含p1*p2, p2*p3…的个数为n/(p1*p2)… phi(n) = n - sigm_[i = 1](n/pi) + sigm_[i!=j](n/(pi*pj)) - …… +- n/(p1*p2……pk) = n*(1 - 1/p1)*(1 - 1/p2)*……*(1 - 1/pk)
上传时间: 2014-01-10
上传用户:wkchong
MS Visual Studio .NET.rar frame.CombinedTransformationMatrix = frame.TransformationMatrix * parentMatrix if (frame.FrameSibling != null) { UpdateFrameMatrices((FrameDerived)frame.FrameSibling, parentMatrix) } if (frame.FrameFirstChild != null) { UpdateFrameMatrices((FrameDerived)frame.FrameFirstChild, frame.CombinedTransformationMatrix) }
标签: CombinedTransformationMatrix frame TransformationMatrix Visual
上传时间: 2017-01-01
上传用户:daguda