特点: 精确度0.1%满刻度 可作各式數學演算式功能如:A+B/A-B/AxB/A/B/A&B(Hi or Lo)/|A|/ 16 BIT类比输出功能 输入与输出绝缘耐压2仟伏特/1分钟(input/output/power) 宽范围交直流兩用電源設計 尺寸小,穩定性高
上传时间: 2014-12-23
上传用户:ydd3625
The MAX5713/MAX5714/MAX5715 4-channel, low-power,8-/10-/12-bit, voltage-output digital-to-analog converters(DACs) include output buffers and an internal referencethat is selectable to be 2.048V, 2.500V, or 4.096V. TheMAX5713/MAX5714/MAX5715 accept a wide supplyvoltage range of 2.7V to 5.5V with extremely low power(3mW) consumption to accommodate most low-voltageapplications. A precision external reference input allowsrail-to-rail operation and presents a 100kI (typ) load toan external reference.
上传时间: 2013-12-23
上传用户:ArmKing88
The MAX17600–MAX17605 devices are high-speedMOSFET drivers capable of sinking /sourcing 4A peakcurrents. The devices have various inverting and noninvertingpart options that provide greater flexibility incontrolling the MOSFET. The devices have internal logiccircuitry that prevents shoot-through during output-statchanges. The logic inputs are protected against voltagespikes up to +14V, regardless of VDD voltage. Propagationdelay time is minimized and matched between the dualchannels. The devices have very fast switching time,combined with short propagation delays (12ns typ),making them ideal for high-frequency circuits. Thedevices operate from a +4V to +14V single powersupply and typically consume 1mA of supply current.The MAX17600/MAX17601 have standard TTLinput logic levels, while the MAX17603 /MAX17604/MAX17605 have CMOS-like high-noise margin (HNM)input logic levels. The MAX17600/MAX17603 are dualinverting input drivers, the MAX17601/MAX17604 aredual noninverting input drivers, and the MAX17602 /MAX17605 devices have one noninverting and oneinverting input. These devices are provided with enablepins (ENA, ENB) for better control of driver operation.
上传时间: 2013-12-20
上传用户:zhangxin
Abstract: IC switches and multiplexers are proliferating, thanks to near-continual progress in lowering the supply voltage,incorporating fault-protected inputs, clamping the output voltage, and reducing the switch resistances. The latest of these advancesis the inclusion of precision resistors to allow two-point calibration of gain and offset in precision data-acquisition systems.
上传时间: 2013-11-12
上传用户:acwme
Abstract: This tutorial discusses methods for digitally adjusting the output voltage of a DC-DC converter. The digital adjustmentmethods are with a digital-to-analog converter (DAC), a trim pot (digital potentiometer), and PWM output of a microprocessor.Each method is assessed and several DACs and digital potentiometers presented.
上传时间: 2013-11-20
上传用户:zycidjl
The purpose of this application note is to show an example of how a digital potentiometer can be used in thefeedback loop of a step-up DC-DC converter to provide calibration and/or adjustment of the output voltage.The example circuit uses a MAX5025 step-up DC-DC converter (capable of generating up to 36V,120mWmax) in conjunction with a DS1845, 256 position, NV digital potentiometer. For this example, the desiredoutput voltage is 32V, which is generated from an input supply of 5V. The output voltage can be adjusted in35mV increments (near 32V) and span a range wide enough to account for resistance, potentiometer and DCDCconverter tolerances (27.6V to 36.7V).
上传时间: 2014-12-23
上传用户:781354052
Abstract: This article discusses application circuits for Maxim force/sense digital-to-analog converters (DACs). Applications include:selectable fixed-gain DAC, programmable gain DAC, photodiode bias control, amperometric sensor control, digitally programmablecurrent source, Kelvin load sensing, temperature sensing, and high current DAC output. A brief description of the various DAC outputconfigurations is also given.
标签: DAC
上传时间: 2013-11-04
上传用户:youmo81
Abstract: Using a DAC and a microprocessor supervisor, the system safety can be improved in industrial controllers, programmablelogiccontrollers (PLC), and data-acquisition systems. The analog output is set to zero-scale (or pin-programmable midscale) when amicroprocessor failure, optocoupler failure, or undervoltage condition occurs. A simple application is shown on how to implement thisfunction.
上传时间: 2013-10-17
上传用户:sjb555
Precision 16-bit analog outputs with softwareconfigurableoutput ranges are often needed in industrialprocess control equipment, analytical and scientificinstruments and automatic test equipment. In the past,designing a universal output module was a daunting taskand the cost and PCB real estate associated with thisfunction were problematic, if not prohibitive.
上传时间: 2014-12-23
上传用户:如果你也听说
Abstract: Transimpedance amplifiers (TIAs) are widely used to translate the current output of sensors like photodiode-to-voltagesignals, since several circuits and instruments can only accept voltage input. An operational amplifier with a feedback resistor fromoutput to the inverting input is the most straightforward implementation of such a TIA. However, even this simple TIA circuit requirescareful trade-offs among noise gain, offset voltage, bandwidth, and stability. Clearly stability in a TIA is essential for good, reliableperformance. This application note explains the empirical calculations for assessing stability and then shows how to fine-tune theselection of the feedback phase-compensation capacitor.
标签: Transimpedance Stabilize Amplifier Your
上传时间: 2013-11-13
上传用户:daoyue