虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

matlab学习

  • 电机传动系统参数辨识方法的研究.rar

    在早期阶段,直流调速系统在传动领域中占统治地位。然而,从60年代后期开始,交流电动机在工业应用领域正在取代直流电动机,交流传动变得越来越经济和受欢迎。永磁交流伺服系统作为电气传动领域的重要组成部分,在工业、农业、航空航天等领域发挥越来越重大的作用。永磁同步电动机以其特点广泛应用于中小功率传动场合,成为研究的重要领域。然而,永磁同步电动机具有较大的转动脉动,而对于这些应用场合,转矩平滑通常是基本要求。因此,对永磁交流伺服系统的应用,必须考虑其转矩脉动的抑制问题。本文针对电机传动系统中参数变化对电机性能的影响,以永磁同步电机为例,围绕如何通过参数辨识来提高永磁同步电动机的控制性能,借助自行开发的全数字永磁交流伺服系统平台,对永磁同步电动机的磁场定向控制,参数辨识,神经网络和扩展卡尔曼滤波在控制系统中的应用,抑制转矩脉动,提高系统性能几个方面展开深入的研究。 本文从永磁同步电动机及其控制系统的基本结构出发,对通过参数辨识抑制转矩脉动进行了较为细致的分析。针对不同情况,通过改进电机的控制系统,提出了多种参数辨识方法。主要内容如下: 1、基于定子磁链方程,建立了永磁同步电动机的一般数学模型。经坐标变换,得出在静止两相(α—β)坐标系和旋转两相(d—q)坐标系下永磁同步电动机电压方程和转矩方程。 2、分析了永磁同步电动机id=0矢量控制系统的工作原理,介绍了永磁同步电动基于磁场定向的矢量控制的基本概念。经对永磁同步电动机系统进行分析,推导并建立了id=0控制时整个电机系统的数学模型。 3、基于超稳定性理论的模型参考自适应控制原理,设计了一种模型参考自适应控制系统,考虑电机参数的时变性,对永磁交流伺服系统的绕组电阻和电机负载转矩辨识进行了研究,以保持系统的动态性能。利用Matlab/Simulink建立仿真模型,对控制性能进行了验证,仿真实验证明这种方法的可行性。 4、人工神经网络具有很强的学习性能,经过训练的多层神经网络能以任意精度逼近非线性函数,因此为非线性系统辨识提供了一个强有力的工具。本章针对永磁同步电机提出了一种以电机输出转速为目标函数的神经网络控制方案,同时应用人工神经网络理论建立和设计了负载转矩扰动辨识的算法以及相应的控制系统的补偿方法,并应用MATLAB软件进行了计算机仿真,仿真证明和传统的控制方法相比,以电机输出转速为指导值和目标函数的神经网络控制方案能有效地提高神经网络的收敛速度,能有效地改善控制系统的动态响应,具有跟踪性能好和鲁棒性较强等优点。 5、电机的参数会随着温升和磁路饱和发生变化,需进行在线实时辨识。本文利用电机的定子电流、电压和转速,采用递推最小二乘法进行在线参数辨识,该方法不需要观测的磁链信号,消除了磁链观测和参数辨识的耦合。电机状态方程由于存在状态变量的乘积项,对电机参数辨识以后,仍然是非线性方程,为了对电机状态方程进行状态估计,得到电机的参数辨识值,本文采用扩展卡尔曼滤波进行状态估计,对以上方法的仿真实验得到了满意的结果。 6、本文基于数字电机控制专用DSP自行开发了全数字永磁交流伺服系统平台,通过软件实现扩展卡尔曼滤波对电阻和磁链的估计,以及基于磁场定向的空间矢量控制算法,获得了令人满意的实验结果,证明扩展卡尔曼滤波算法对电阻和磁链的实时估计是很准确的,由此构成的永磁交流伺服系统具有良好的静、动态性能。

    标签: 电机 传动系统 参数辨识

    上传时间: 2013-07-28

    上传用户:凤临西北

  • 51单片机学习笔记.rar

    51单片机学习笔记。HJ-1G开发板学习笔记一

    标签: 51单片机

    上传时间: 2013-05-25

    上传用户:jiachuan666

  • 新手学习C的建议,如何快速掌握C.rar

    要学习一门编程语言并不难,编程主要是掌握思想,然后就是练习敲代码了。你的代码量每突破50000行的时候你的水平都有一个阶段性的提升,翔子在此给学习c#的朋友一些建议,供新手参考!首先熟悉.net框架,理解面向对象编程的思想,挺重要的!编程的学习是要慢慢而来的,慢慢的积累!

    标签:

    上传时间: 2013-04-24

    上传用户:xyipie

  • 常见的图像处理matlab源代码.rar

    学习图像必备的,方便你的学习!包含:中值滤波,直方图,维纳滤波,均衡滤波等等……

    标签: matlab 图像处理 源代码

    上传时间: 2013-04-24

    上传用户:三人用菜

  • 基于MATLAB的永磁风力发电机动态仿真.rar

    作为世界上发展最快的可再生能源,风能受到了世界各国的关注。随着风机数量的增加,研究电网故障时风力发电机的动态响应特性越来越重要。 本文以“3.2MW永磁风力发电机系统分析”为工程背景,旨在研究3.2MW永磁风力发电机及其系统在各种正常和非正常工况下的动态性能,分析变流系统和控制方法对电机性能的影响,为电机的优化设计提供参考。 首先,在对永磁风力发电机的基本理论进行论述的基础上,分析了变转速变桨距控制策略,并基于Matlab/Simulink建立了风力发电机模型,通过仿真分析了最大功率跟踪和变桨距控制下发电机的性能。 其次,研究了双PWM变流系统电机侧变流器和网侧变流器的控制方法,并基于Matlab/Simulink搭建了基于转速外环、电流内环双PI调节器的电机侧控制器模型及基于电网电压定向的电压外环、电流内环控制的网侧控制器模型。 最后,基于Matlab/Simulink对电网短路及电网电压跌落下不同控制方法下的永磁风力发电机系统的动态性能进行仿真;并对永磁风力发电机机端短路下的运行性能进行仿真,结果表明:网侧变流器的电流变化以及直流母线的电压波动对永磁风力发电机系统的动态性能影响较大,通过控制网侧变流器电流、直流母线电压的稳定,可以有效提高永磁风力发电机系统的动态性能;给定的电机设计参数符合短路电流倍数要求;永磁风力发电机通过变流装置并网可大大减小故障对发电机的冲击。

    标签: MATLAB 风力发电机 动态仿真

    上传时间: 2013-04-24

    上传用户:nanjixehun

  • 基于自适应时频分析方法的心音信号分析研究.rar

    心音信号是人体最重要的生理信号之一,包含心脏各个部分如心房、心室、大血管、心血管及各个瓣膜功能状态的大量生理病理信息。心音信号分析与识别是了解心脏和血管状态的一种不可缺少的手段。本文针对目前该研究领域中存在的分析方法问题和分类识别技术难点展开了深入的研究,内容涉及心音构成的分析、心音信号特征向量的提取、正常心音信号(NM)和房颤(AF)、主动脉回流(AR)、主动脉狭窄(AS)、二尖瓣回流(MR)4种心脏杂音信号的分类识别。本文的工作内容包括以下5个方面: a)心音信号采集与预处理。本文采用自行研制的带有录音机功能的听诊器实现对心音信号的采集。通过对心音信号噪声分析,选用小波降噪作为心音信号的滤波方法。根据实验分析,选择Donoho阈值函数结合多级阈值的方法作为心音信号预处理方案。 b)心音信号时频分析方法。文中采用5种时频分析方法分别对心音信号进行了时频谱特性分析,结果表明:不同的时频分析方法与待分析心音信号的特性有密切关系,即需要在小的交叉项干扰与高的时频分辨率之间作综合的考虑。鉴于此,本文提出了一种自适应锥形核时频(ATF)分析方法,通过实验验证该分布能较好地反映心音信号的时频结构,其性能优于一般锥形核分布(CKD)以及Choi-Williams分布(CWD)、谱图(SPEC)等固定核时频分析方法,从而选择自应锥形核时频分析方法进行心音信号分析。 c)心音信号特征向量提取。根据对3M Littmann() Stethoscopes[31]数据库中标准心音信号的时频分析结果,提取8组特征数据,通过Fihser降维处理方法提取出了实现分类可视化,且最易于分类的心音信号的2维特征向量,作为心音信号分类的特征向量。 d)心音信号分类方法。根据心音信号特征向量组成的散点图,研究了支持向量机核函数、多分类支持向量机的选取方法,同时,基于分类的目的 性和可信性,本文提出以分类精度最大为判断准则的核函数参数与松弛变量的优化方法,建立了心音信号分类的支持向量机模型,选取标准数据库中NM、AF、AR、AS、MR每类心音信号的80组2维特征向量中每类60组数据作为支持向量机的学习样本,对余下的每类20组数据进行测试,得到每类的分类精度(Ar)均为100%,同时对临床上采集的与上述4种同类心脏杂音信号和正常心音信号中每类24个心动周期进行分类实测,分类精度分别为:NM、AF、MR的分类精度均为100%,而AR、AS均为95.83%,验证了该方法的分类有效性。 e)心音信号分析与识别的软件系统。本文以MATLAB语言的可视化功能实现了心音信号分析与识别的软件运行平台构建,可完成对心音信号的读取、预处理,绘制时-频、能量特性的三维图及两维等高线图;同时,利用MATLAB与EXCEL的动态链接,实现对心音信号分析数据的存储以及统计功能;最后,通过对心音信号2维特征向量的分析,实现心音信号的自动识别功能。 本文的研究特色主要体现在心音信号特征向量提取的方法以及多分类支持向量机模型的建立两方面。 综上所述,本文从理论与实践两方面对心音信号进行了深入的研究,主要是采用自适应锥形核时频分析方法提取心音信号特征向量,根据心音信号特征向量组成的散点图,建立心音信号分类的支持向量机模型,并对正常心音信号和4种心脏杂音信号进行了分类研究,取得了较为满意的分类结果,但由于用于分类的心脏杂音信号种类及数据量尚不足,因此,今后的工作重点是采集更多种类的心脏杂音信号,进一步提高心音信号分类精度,使本文研究成果能最终应用于临床心脏量化听诊。 关键词:心音信号,小波降噪,非平稳信号,心脏杂音,信号处理,时频分析,自适应,支持向量机

    标签: 时频 分析方法

    上传时间: 2013-04-24

    上传用户:weixiao99

  • 牛人自述模拟电路学习历程.rar

    牛人自述模拟电路学习历程,供大家参考,学习,欣赏

    标签: 模拟电路

    上传时间: 2013-04-24

    上传用户:gououo

  • C语言编程一站式学习-HTML.rar

    C语言编程一站式学习-HTML,C语言学习的好教程

    标签: HTML C语言编程

    上传时间: 2013-04-24

    上传用户:jyycc

  • 华为模拟电路设计学习资料.rar

    华为模拟电路设计学习资料,内部发行。基础简单

    标签: 华为 模拟电路设计

    上传时间: 2013-06-04

    上传用户:万有引力

  • 异步电机无速度传感器矢量控制系统研究.rar

    异步电机无速度传感器矢量控制技术提高了交流传动系统的可靠性,降低了系统的实现成本。准确辨识电机转速是实现无速度传感器矢量控制的关键。 本文对无速度传感器矢量控制系统进行了研究,建立了异步电动机无速度传感器电压解耦矢量控制系统和基于模型参考自适应(MRAS)的无速度传感器矢量控制系统。基于MRAS的无速度传感器矢量控制系统利用电动机定子电压方程和电流方程得到电动机转速的模型参考自适应辨识算法,在此基础上建立了一个改进的变参数MRAS速度辨识数学模型,并利用Matlab软件对基于该速度辨识模型的无速度传感器异步电动机矢量控制系统在不同的情况下进行了详细的仿真研究。仿真结果验证了该改进的变参数MRAS速度辨识模型具有令人满意的辨识精度和动态性能。 基于MRAS的转速估算理论从本质上来说属于基于电机理想模型的转速估算方案,该方法依赖于电机参数,而电机参数在电机运动过程中变化很大,因而给出了对电机的一些定、转子参数进行实时辨识方法,以保持系统的动、静态性能。 在传统型模型参考自适应系统基础上,将系统中原有的自适应调节机构用一个具有在线学习能力的人工神经网络取代,提出一种基于神经网络的异步电机转速估计方法,并给出了速度估计器的神经网络结构和学习算法。最后对基于神经网络转速估计的异步电机矢量控制系统进行了仿真,结果表明该系统具有良好的性能。 简单介绍了基于DSP的异步电机无速度传感器矢量控制系统的硬件结构以及软件系统的设计。

    标签: 异步电机 速度传感器 矢量控制

    上传时间: 2013-05-30

    上传用户:hakim