📚 k-Nearest技术资料

📦 资源总数:1149
💻 源代码:164441
k-Nearest邻近算法,作为机器学习中的经典分类与回归技术,广泛应用于模式识别、数据挖掘及信号处理等领域。通过计算样本间的距离来预测未知数据点的类别或值,特别适合于解决复杂非线性问题。无论是图像识别还是异常检测,k-Nearest都能提供高效解决方案。本页面汇集了1149个精选资源,涵盖理论教程、实战案例与开源代码,助力电子工程师深入理解并灵活运用这一强大工具,加速项目开发进程。

🔥 k-Nearest热门资料

查看全部1149个资源 »

代入法的启发示搜索 我的代码实现是:按照自然语言各字母出现频率的大小从高到低(已经有人作国统计分析了)先生成一张字母出现频率统计表(A)--------(e),(t,a,o,i,n,s,h,r),(d,l),(c,u,m,w,f,g,y,p,b),(v,k,j,x,q,z) ,再对密文字母计算频...

📅 👤 wanqunsheng

设B是一个n×n棋盘,n=2k,(k=1,2,3,…)。用分治法设计一个算法,使得:用若干个L型条块可以覆盖住B的除一个特殊方格外的所有方格。其中,一个L型条块可以覆盖3个方格。且任意两个L型条块不能重叠覆盖棋盘...

📅 👤 脚趾头

GM(1,1)模型1-4 1:GM(1,1)模拟模型,在matlab中的输入方法为gm1(x),x指要模拟的序列。 2:GM(1,1)预测模型,在matlab中的输入方法为gm2(x,K),x指要模拟的序列,K指从以后序列第一个数据算起的第k个待预测数据。 3:GM(1,1)群模拟模型,在ma...

📅 👤 jackgao
📂 k-Nearest资料分类