has
共 19 篇文章
has 相关的电子技术资料,包括技术文档、应用笔记、电路设计、代码示例等,共 19 篇文章,持续更新中。
射频集成电路设计John Rogers(Radio Freq
<P>Radio Frequency Integrated Circuit Design</P>
<P>I enjoyed reading this book for a number of reasons. One reason is that it<BR>addresses high-speed analog design in the context of microwave issues.
针对远程系统的小型温度传感器 (tiny temperatu
The LM20, LM45, LM50, LM60, LM61, and LM62 are analog output temperature sensors. They have various output voltage slopes (6.25mV/°C to 17mV/°C) and power supply voltage ranges (2.4V to 10V).The LM20
凌力尔特芯片电路总汇
<p>
Over the past several years Linear Technology, the magazine, has come of age. From nothing, the publication has come into its own, as has its subscriber list. Many innovative circuits have seen t
DN426 6通道工业监控应用的SAR ADC
<p>
</p>
<div>
The 14-bit LTC2351-14 is a 1.5Msps, low power SARADC with six simultaneously sampled differential inputchannels. It operates from a single 3V supply and featuressix independent
远程信息处理数字融合--如何应对新兴标准和协议
<div>
Digital convergence, in recent history, has been prevalentin the consumer equipment domain and the designengineers in this area have been struggling with a plethoraof emerging standards and pro
RF至数字接收器的信号链噪声分析
<p>
</p>
<div>
Designers of signal receiver systems often need to performcascaded chain analysis of system performancefrom the antenna all the way to the ADC. Noise is a criticalparameter in t
高集成四通道工业控制应用的电压输出DAC
<p>
</p>
<div>
Digital-to-analog converters (DACs) are prevalent inindustrial control and automated test applications.General-purpose automated test equipment often requiresmany channels of pr
水声信号功率放大器的设计与实现
设计了水声信号发生系统中的功率放大电路,可将前级电路产生的方波信号转换为正弦信号,同时进行滤波、功率放大,使其满足换能器对输入信号的要求。该电路以单片机AT89C52,集成6阶巴特沃思低通滤波芯片MF6以及大功率运算放大器LM12为核心,通过标准RS232接口与PC进行通信,实现信号增益的程控调节,对干扰信号具有良好的抑制作用。经调试该电路工作稳定正常,输出波形无失真,在输出功率以及放大增益、波纹
传感器信号调节 - 用于信号调节的ADC
<div>
The trend in ADCs and DACs is toward higher speeds and higher resolutions atreduced power levels. Modern data converters generally operate on ±5V (dualsupply) or +5V (single supply). In
COOLMOS全面认识
<div>
Recently a new technology for high voltage Power MOSFETshas been introduced – the CoolMOS™ . Based on thenew device concept of charge compensation the RDS(on) areaproduct for e.g. 6
Active Filters
Power conversion by virtue of its basic role produces harmonics due to the<BR>slicing of either voltages or currents. To a large extent the pollution in the<BR>utility supply and the deterioration of
2012TI电子设计大赛——微弱信号检测装置
微弱信号检测装置<br />
四川理工学院 刘鹏飞、梁天德、曾学明<br />
摘要:<br />
本设计以TI的Launch Pad为核心板,采用锁相放大技术设计并制作了一套微弱信号检测装置,用以检测在强噪声背景下已知频率微弱正弦波信号的幅度值,并在液晶屏上数字显示出所测信号相应的幅度值。实验结果显示其抗干扰能力强,测量精度高。<br />
关键词:强噪声;微弱信号;锁相放大
简化精密测量的高输入阻抗ADC
<p>
</p>
<div>
High input impedance and a wide input range are twohighly desirable features in a precision analog-to-digitalconverter, and the LTC®2449 delta-sigma ADC has both.With just a
DAC技术用语 (D/A Converters Defini
Differential Nonlinearity: Ideally, any two adjacent digital<BR>codes correspond to output analog voltages that are exactly<BR>one LSB apart. Differential non-linearity is a measure of the<BR>worst ca
意法半导体运放稳定性
<p>
</p>
<div>
Who has never experienced oscillations issues when using an operational amplifier? Opampsare often used in a simple voltage follower configuration. However, this is not the best
高速数字系统设计下载pdf
高速数字系统设计下载pdf:High-Speed Digital System<BR>Design—A Handbook of<BR>Interconnect Theory and Design<BR>Practices<BR>Stephen H. Hall<BR>Garrett W. Hall<BR>James A. McCall<BR>A Wiley-Interscience Publicat
用于信号调理的微电路
<p>
</p>
<div>
Low power operation of electronic apparatus has becomeincreasingly desirable. Medical, remote data acquisition,power monitoring and other applications are good candidatesfor bat
真有效值转换器的自动调节
<p>
</p>
<div>
The LTC®1966 is a true RMS-to-DC converter that uses aDS computational technique to make it dramatically simplerto use, significantly more accurate, lower in powerconsumptio
二极管导通开关稳压器引发的故障时间
<p>
</p>
<div>
Most circuit designers are familiar with diode dynamiccharacteristics such as charge storage, voltage dependentcapacitance and reverse recovery time. Less commonlyacknowledged a