虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

full-hardware

  • 基于(英蓓特)STM32V100的串口程序

    This example provides a description of how  to use the USART with hardware flowcontrol and communicate with the Hyperterminal.First, the USART2 sends the TxBuffer to the hyperterminal and still waiting fora string from the hyperterminal that you must enter which must end by '\r'character (keypad ENTER button). Each byte received is retransmitted to theHyperterminal. The string that you have entered is stored in the RxBuffer array. The receivebuffer have a RxBufferSize bytes as maximum. The USART2 is configured as follow:    - BaudRate = 115200 baud      - Word Length = 8 Bits    - One Stop Bit    - No parity    - Hardware flow control enabled (RTS and CTS signals)    - Receive and transmit enabled    - USART Clock disabled    - USART CPOL: Clock is active low    - USART CPHA: Data is captured on the second edge     - USART LastBit: The clock pulse of the last data bit is not output to                      the SCLK pin

    标签: V100 STM 100 32V

    上传时间: 2013-10-31

    上传用户:yy_cn

  • 远程配置Nios II处理器应用笔记

         通过以太网远程配置Nios II 处理器 应用笔记 Firmware in embedded hardware systems is frequently updated over the Ethernet. For embedded systems that comprise a discrete microprocessor and the devices it controls, the firmware is the software image run by the microprocessor. When the embedded system includes an FPGA, firmware updates include updates of the hardware image on the FPGA. If the FPGA includes a Nios® II soft processor, you can upgrade both the Nios II processor—as part of the FPGA image—and the software that the Nios II processor runs, in a single remote configuration session.

    标签: Nios 远程 处理器 应用笔记

    上传时间: 2013-11-22

    上传用户:chaisz

  • 怎样使用Nios II处理器来构建多处理器系统

    怎样使用Nios II处理器来构建多处理器系统 Chapter 1. Creating Multiprocessor Nios II Systems Introduction to Nios II Multiprocessor Systems . . . . . . . . . . . . . . 1–1 Benefits of Hierarchical Multiprocessor Systems  . . . . . . . . . . . . . . . 1–2 Nios II Multiprocessor Systems . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . 1–2 Multiprocessor Tutorial Prerequisites   . . . . . . . . . . .  . . . . . . . . . . . . 1–3 Hardware Designs for Peripheral Sharing   . . . . . . . . . . . .. . . . . . . . 1–3 Autonomous Multiprocessors   . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . 1–3 Multiprocessors that Share Peripherals . . . . . . . . . . . . . . . . . . . . . . 1–4 Sharing Peripherals in a Multiprocessor System   . . . . . . . . . . . . . . . . . 1–4 Sharing Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–6 The Hardware Mutex Core  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . 1–7 Sharing Peripherals   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 1–8 Overlapping Address Space  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . 1–8 Software Design Considerations for Multiple Processors . . .. . . . . 1–9 Program Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–9 Boot Addresses  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1–13 Debugging Nios II Multiprocessor Designs  . . . . . . . . . . . . . . . .  1–15 Design Example: The Dining Philosophers’ Problem   . . . . .. . . 1–15 Hardware and Software Requirements . . . . . . . . . . . . . . . .. . . 1–16 Installation Notes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–17 Creating the Hardware System   . . . . . . . . . . . . . . .. . . . . . 1–17 Getting Started with the multiprocessor_tutorial_start Design Example   1–17 Viewing a Philosopher System   . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . 1–18 Philosopher System Pipeline Bridges  . . . . . . . . . . . . . . . . . . . . . 1–19 Adding Philosopher Subsystems   . . . . . . . . . . . . . . . . . . . . . .  . . . . 1–21 Connecting the Philosopher Subsystems  . . . . . . . . . . . . .. . . . . 1–22 Viewing the Complete System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–27 Generating and Compiling the System   . . . . . . . . . . . . . . . . . .. 1–28

    标签: Nios 处理器 多处理器

    上传时间: 2013-11-21

    上传用户:lo25643

  • 使用Nios II紧耦合存储器教程

                 使用Nios II紧耦合存储器教程 Chapter 1. Using Tightly Coupled Memory with the Nios II Processor Reasons for Using Tightly Coupled Memory  . . . . . . . . . . . . . . . . . . . . . . . 1–1 Tradeoffs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1 Guidelines for Using Tightly Coupled Memory . . . .. . . . . . . . 1–2 Hardware Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2 Software Guidelines  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 1–3 Locating Functions in Tightly Coupled Memory  . . . . . . . . . . . . . 1–3 Tightly Coupled Memory Interface   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4 Restrictions   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4 Dual Port Memories  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 1–5 Building a Nios II System with Tightly Coupled Memory  . . . . . . . . . . . 1–5

    标签: Nios 耦合 存储器 教程

    上传时间: 2013-10-13

    上传用户:黄婷婷思密达

  • Nios II软件开发人员手册中的缓存和紧耦合存储器部分

            Nios II 软件开发人员手册中的缓存和紧耦合存储器部分 Nios® II embedded processor cores can contain instruction and data caches. This chapter discusses cache-related issues that you need to consider to guarantee that your program executes correctly on the Nios II processor. Fortunately, most software based on the Nios II hardware abstraction layer (HAL) works correctly without any special accommodations for caches. However, some software must manage the cache directly. For code that needs direct control over the cache, the Nios II architecture provides facilities to perform the following actions:

    标签: Nios 软件开发 存储器

    上传时间: 2013-10-25

    上传用户:虫虫虫虫虫虫

  • Nios II定制指令用户指南

         Nios II定制指令用户指南:With the Altera Nios II embedded processor, you as the system designer can accelerate time-critical software algorithms by adding custom instructions to the Nios II processor instruction set. Using custom instructions, you can reduce a complex sequence of standard instructions to a single instruction implemented in hardware. You can use this feature for a variety of applications, for example, to optimize software inner loops for digital signal processing (DSP), packet header processing, and computation-intensive applications. The Nios II configuration wizard,part of the Quartus® II software’s SOPC Builder, provides a graphical user interface (GUI) used to add up to 256 custom instructions to the Nios II processor. The custom instruction logic connects directly to the Nios II arithmetic logic unit (ALU) as shown in Figure 1–1.

    标签: Nios 定制 指令 用户

    上传时间: 2013-10-12

    上传用户:kang1923

  • Nios II 系列处理器配置选项

        Nios II 系列处理器配置选项:This chapter describes the Nios® II Processor parameter editor in Qsys and SOPC Builder. The Nios II Processor parameter editor allows you to specify the processor features for a particular Nios II hardware system. This chapter covers the features of the Nios II processor that you can configure with the Nios II Processor parameter editor; it is not a user guide for creating complete Nios II processor systems.

    标签: Nios II 列处理器

    上传时间: 2015-01-01

    上传用户:mahone

  • Virtex-6 FPGA PCB设计手册

    Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the developmentof designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit theDocumentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise,without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reservesthe right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errorscontained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection withtechnical support or assistance that may be provided to you in connection with the Information.

    标签: Virtex FPGA PCB 设计手册

    上传时间: 2013-11-11

    上传用户:zwei41

  • WP369可扩展式处理平台-各种嵌入式系统的理想解决方案

    WP369可扩展式处理平台-各种嵌入式系统的理想解决方案 :Delivering unrivaled levels of system performance,flexibility, scalability, and integration to developers,Xilinx's architecture for a new Extensible Processing Platform is optimized for system power, cost, and size. Based on ARM's dual-core Cortex™-A9 MPCore processors and Xilinx’s 28 nm programmable logic,the Extensible Processing Platform takes a processor-centric approach by defining a comprehensive processor system implemented with standard design methods. This approach provides Software Developers a familiar programming environment within an optimized, full featured,powerful, yet low-cost, low-power processing platform.

    标签: 369 WP 扩展式 处理平台

    上传时间: 2013-10-18

    上传用户:cursor

  • xilinx Zynq-7000 EPP产品简介

    The Xilinx Zynq-7000 Extensible Processing Platform (EPP) redefines the possibilities for embedded systems, giving system and software architects and developers a flexible platform to launch their new solutions and traditional ASIC and ASSP users an alternative that aligns with today’s programmable imperative. The new class of product elegantly combines an industrystandard ARMprocessor-based system with Xilinx 28nm programmable logic—in a single device. The processor boots first, prior to configuration of the programmable logic. This, along with a streamlined workflow, saves time and effort and lets software developers and hardware designers start development simultaneously. 

    标签: xilinx Zynq 7000 EPP

    上传时间: 2013-10-09

    上传用户:evil