中文版详情浏览:http://www.elecfans.com/emb/fpga/20130715324029.html Xilinx UltraScale:The Next-Generation Architecture for Your Next-Generation Architecture The Xilinx® UltraScale™ architecture delivers unprecedented levels of integration and capability with ASIC-class system- level performance for the most demanding applications. The UltraScale architecture is the industr y's f irst application of leading-edge ASIC architectural enhancements in an All Programmable architecture that scales from 20 nm planar through 16 nm FinFET technologies and beyond, in addition to scaling from monolithic through 3D ICs. Through analytical co-optimization with the X ilinx V ivado® Design Suite, the UltraScale architecture provides massive routing capacity while intelligently resolving typical bottlenecks in ways never before possible. This design synergy achieves greater than 90% utilization with no performance degradation. Some of the UltraScale architecture breakthroughs include: • Strategic placement (virtually anywhere on the die) of ASIC-like system clocks, reducing clock skew by up to 50% • Latency-producing pipelining is virtually unnecessary in systems with massively parallel bus architecture, increasing system speed and capability • Potential timing-closure problems and interconnect bottlenecks are eliminated, even in systems requiring 90% or more resource utilization • 3D IC integration makes it possible to build larger devices one process generation ahead of the current industr y standard • Greatly increased system performance, including multi-gigabit serial transceivers, I/O, and memor y bandwidth is available within even smaller system power budgets • Greatly enhanced DSP and packet handling The Xilinx UltraScale architecture opens up whole new dimensions for designers of ultra-high-capacity solutions.
标签: UltraScale Xilinx 架构
上传时间: 2013-11-21
上传用户:wxqman
Abstract: designers who must interface 1-Wire temperature sensors with Xilinx field-programmable gate arrays(FPGAs) can use this reference design to drive a DS28EA00 1-Wire slave device. The downloadable softwarementioned in this document can also be used as a starting point to connect other 1-Wire slave devices. The systemimplements a 1-Wire master connected to a UART and outputs temperature to a PC from the DS28EA00 temperaturesensor. In addition, high/low alarm outputs are displayed from the DS28EA00 PIO pins using LEDs.
标签: PicoBlaze Create Master Xilinx
上传时间: 2013-11-12
上传用户:大三三
The Circuit Designer’s Companion Second edition Tim Williams
标签: designers Companion Circuit PCB
上传时间: 2013-10-08
上传用户:sxdtlqqjl
Designing withProgrammable Logicin an Analog WorldProgrammable logic devices revolutionizeddigital design over 25 years ago,promising designers a blank chip todesign literally any function and programit in the field. PLDs can be low-logicdensity devices that use nonvolatilesea-of-gates cells called complexprogrammable logic devices (CPLDs)or they can be high-density devicesbased on SRAM look-up tables (LUTs)
标签: Solutions Analog Altera FPGAs
上传时间: 2013-10-27
上传用户:fredguo
Designing withProgrammable Logicin an Analog WorldProgrammable logic devicesrevolutionized digital design over 25years ago, promising designers a blankchip to design literally any functionand program it in the field. PLDs canbe low-logic density devices that usenonvolatile sea-of-gates cells calledcomplex programmable logic devices(CPLDs) or they can be high-densitydevices based on SRAM look-up tables
标签: Solutions Analog Xilinx FPGAs
上传时间: 2013-11-07
上传用户:suicone
This application note contains a reference design consisting of HDL IP and Xilinx AdvancedConfiguration Environment (ACE) software utilities that give designers great flexibility increating in-system programming (ISP) solutions. In-system programming support allowsdesigners to revise existing designs, package the new bitstream programming files with theprovided software utilities, and update the remote system through the JTAG interface using theEmbedded JTAG ACE Player.
上传时间: 2013-10-22
上传用户:gai928943
Most designers wish to utilize as much of a device as possible in order to enhance the overallproduct performance, or extend a feature set. As a design grows, inevitably it will exceed thearchitectural limitations of the device. Exactly why a design does not fit can sometimes bedifficult to determine. Programmable logic devices can be configured in almost an infinitenumber of ways. The same design may fit when you use certain implementation switches, andfail to fit when using other switches. This application note attempts to clarify the CPLD softwareimplementation (CPLDFit) options, as well as discuss implementation tips in CoolRunnerTM-IIdesigns in order to maximize CPLD utilization.
上传时间: 2014-01-11
上传用户:a471778
Today’s digital systems combine a myriad of chips with different voltage configurations.designers must interface 2.5V processors with 3.3V memories—both RAM and ROM—as wellas 5V buses and multiple peripheral chips. Each chip has specific power supply needs. CPLDsare ideal for handling the multi-voltage interfacing, but do require forethought to ensure correctoperation.
上传时间: 2013-11-10
上传用户:yy_cn
This introduction covers the fundamentals of VHDL as applied to Complex ProgrammableLogic Devices (CPLDs). Specifically included are those design practices that translate soundlyto CPLDs, permitting designers to use the best features of this powerful language to extractoptimum performance for CPLD designs.
上传时间: 2013-11-21
上传用户:gtf1207
Xilinx Next Generation 28 nm FPGA Technology Overview Xilinx has chosen 28 nm high-κ metal gate (HKMG) highperformance,low-power process technology and combined it with a new unified ASMBL™ architecture to create a new generation of FPGAs that offer lower power and higher performance. These devices enable unprecedented levels of integration and bandwidth and provide system architects and designers a fully programmable alternative to ASSPs and ASICs.
上传时间: 2013-12-07
上传用户:bruce