虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

article

  • python爬虫获取大量免费有效代理ip--有效防止ip被封

    以后再也不用担心写爬虫ip被封,不用担心没钱买代理ip的烦恼了 在使用python写爬虫时候,你会遇到所要爬取的网站有反爬取技术比如用同一个IP反复爬取同一个网页,很可能会被封。如何有效的解决这个问题呢?我们可以使用代理ip,来设置代理ip池。 现在教大家一个可获取大量免费有效快速的代理ip方法,我们访问西刺免费代理ip网址 这里面提供了许多代理ip,但是我们尝试过后会发现并不是每一个都是有效的。所以我们现在所要做的就是从里面提供的筛选出有效快速稳定的ip。 以下介绍的免费获取代理ip池的方法: 优点:免费、数量多、有效、速度快 缺点:需要定期筛选 主要思路: 从网址上爬取ip地址并存储 验证ip是否能使用-(随机访问网址判断响应码) 格式化ip地址 代码如下: 1.导入包 import requests from lxml import etree import time 1 2 3 2.获取西刺免费代理ip网址上的代理ip def get_all_proxy():     url = 'http://www.xicidaili.com/nn/1'     headers = {         'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.106 Safari/537.36',     }     response = requests.get(url, headers=headers)     html_ele = etree.HTML(response.text)     ip_eles = html_ele.xpath('//table[@id="ip_list"]/tr/td[2]/text()')     port_ele = html_ele.xpath('//table[@id="ip_list"]/tr/td[3]/text()')     proxy_list = []     for i in range(0,len(ip_eles)):         proxy_str = 'http://' + ip_eles[i] + ':' + port_ele[i]         proxy_list.append(proxy_str)     return proxy_list 1 2 3 4 5 6 7 8 9 10 11 12 13 14 3.验证获取的ip def check_all_proxy(proxy_list):     valid_proxy_list = []     for proxy in proxy_list:         url = 'http://www.baidu.com/'         proxy_dict = {             'http': proxy         }         try:             start_time = time.time()             response = requests.get(url, proxies=proxy_dict, timeout=5)             if response.status_code == 200:                 end_time = time.time()                 print('代理可用:' + proxy)                 print('耗时:' + str(end_time - start_time))                 valid_proxy_list.append(proxy)             else:                 print('代理超时')         except:             print('代理不可用--------------->'+proxy)     return valid_proxy_list 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 4.输出获取ip池 if __name__ == '__main__':     proxy_list = get_all_proxy()     valid_proxy_list = check_all_proxy(proxy_list)     print('--'*30)     print(valid_proxy_list) 1 2 3 4 5 技术能力有限欢迎提出意见,保证积极向上不断学习 ———————————————— 版权声明:本文为CSDN博主「彬小二」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。 原文链接:https://blog.csdn.net/qq_39884947/article/details/86609930

    标签: python ip 代理 防止

    上传时间: 2019-11-15

    上传用户:fygwz1982

  • gibbs抽样 matlab实现

    使用matlab实现gibbs抽样,MCMC: The Gibbs Sampler  多元高斯分布的边缘概率和条件概率  Marginal and conditional distributions of multivariate normal distribution

    标签: matlab gibbs 抽样

    上传时间: 2019-12-10

    上传用户:real_

  • Embeddings in Natural Language Processing

    Artificial Intelligence (AI) has undoubtedly been one of the most important buz- zwords over the past years. The goal in AI is to design algorithms that transform com- puters into “intelligent” agents. By intelligence here we do not necessarily mean an extraordinary level of smartness shown by superhuman; it rather often involves very basic problems that humans solve very frequently in their day-to-day life. This can be as simple as recognizing faces in an image, driving a car, playing a board game, or reading (and understanding) an article in a newspaper. The intelligent behaviour ex- hibited by humans when “reading” is one of the main goals for a subfield of AI called Natural Language Processing (NLP). Natural language 1 is one of the most complex tools used by humans for a wide range of reasons, for instance to communicate with others, to express thoughts, feelings and ideas, to ask questions, or to give instruc- tions. Therefore, it is crucial for computers to possess the ability to use the same tool in order to effectively interact with humans.

    标签: Embeddings Processing Language Natural in

    上传时间: 2020-06-10

    上传用户:shancjb