This paper presents a space vector modulation(SVM)-based switching strategy for a three-level neutral point clamped (NPC) converter that is adapted as a STATCOM.
上传时间: 2013-10-20
上传用户:zyt
针对传统PID控制系统参数整定过程存在的在线整定困难和控制品质不理想等问题,结合BP神经网络自学习和自适应能力强等特点,提出采用BP神经网络优化PID控制器参数。其次,为了加快BP神经网络学习收敛速度,防止其陷入局部极小点,提出采用粒子群优化算法来优化BP神经网络的连接权值矩阵。最后,给出了PSO-BP算法整定优化PID控制器参数的详细步骤和流程图,并通过一个PID控制系统的仿真实例来验证本文所提算法的有效性。仿真结果证明了本文所提方法在控制品质方面优于其它三种常规整定方法。
上传时间: 2014-03-21
上传用户:diets
机场道面异物是威胁跑道运行安全的常见病害,及时、准确的检测异物具有现实意义。针对现有的人工目视检测方法,本文基于图像处理理论,提出了一种机场道面异物的自动检测算法。根据机场道面的复杂背景和常见异物的特点,本文采取了分块的方法,选择Harris角点、灰度共生矩阵、灰度级分布范围等特征,分别用阈值法和SVM法对实际机场道面异物图像进行检测。初步实验证明,该方法可以有效检测出机场道面复杂背景下的异物,实验结果显示,检测正确率达到了98%。
上传时间: 2013-11-26
上传用户:2404
具有结构风险最小化原则的支持向量机(SVM)对于小样本决策具有较好的学习推广性,并且故障样本的不足在一定程度上制约了基于知识的方法在故障诊断中的运用。针对这一问题,提出了利用支持向量机的方法对匝间转子绕组短路故障诊断方法。该方法利用小波分析对探测线圈测得感应电动势进行处理构造特征向量,然后输入到支持向量机的多故障分类器中进行故障识别。实验数据表明该方法是可行、有效的,并且在小样本的情况下,较BP神经网络有更好的分类效果。
上传时间: 2013-11-04
上传用户:s363994250
将支持向量机应用到典型的时变、非线性工业过程—— 连续搅拌反应釜的辨识中, 并与BP 神经网络建模相比较, 仿真结果表明了支持向量机的有效性与优越性. 支持向量机以其出色的学习能力为工业过程的辨识提出了一种新的途径.
上传时间: 2013-10-17
上传用户:zhangdebiao
最新的支持向量机工具箱,有了它会很方便 1. Find time to write a proper list of things to do! 2. Documentation. 3. Support Vector Regression. 4. Automated model selection. REFERENCES ========== [1] V.N. Vapnik, "The Nature of Statistical Learning Theory", Springer-Verlag, New York, ISBN 0-387-94559-8, 1995. [2] J. C. Platt, "Fast training of support vector machines using sequential minimal optimization", in Advances in Kernel Methods - Support Vector Learning, (Eds) B. Scholkopf, C. Burges, and A. J. Smola, MIT Press, Cambridge, Massachusetts, chapter 12, pp 185-208, 1999. [3] T. Joachims, "Estimating the Generalization Performance of a SVM Efficiently", LS-8 Report 25, Universitat Dortmund, Fachbereich Informatik, 1999.
上传时间: 2013-12-16
上传用户:亚亚娟娟123
//开发平台:Microsoft .NET Framework 2.0,Microsoft Visual C# 2005 Express //日期:2005.3.12 //作者:刘波 //粒子群优化算法(PSO):本算法求目标函数的最小值
标签: Microsoft Framework 2.0 NET
上传时间: 2015-03-15
上传用户:yyyyyyyyyy
支持向量机源码,vc编写,对于svm初学者非常使用非常方便
上传时间: 2013-12-19
上传用户:星仔
同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域
上传时间: 2013-12-16
上传用户:eclipse
Linux环境下的人脸识别程序,他的核心算法是svm网络识别。
上传时间: 2013-11-25
上传用户:李彦东