通过JAVA设计 GUI 界面的计算器程序,用户可以通过鼠标依次输入参加计算的数值,进行加、减、乘、除等混合运算,这些完成标准计算器的基础操作。当选择科学计算器后,可以实现sin 、 cos 、 tan 、 ln、x^y、x^2、x^3、pi、n!、mod和十六进制除这个以外还可以删除输入,清空结果,求1除X,X百分比,十进制是,八进制,二进制的相互转换。
上传时间: 2015-11-22
上传用户:阿四AIR
本文专门讲解如何运用这种原始套接字,来模拟I P的一些实用工具,比如Tr a c e r o u t e和P i n g程序等等。使用原始套接字,亦可对I P头信息进行实际的操作。
上传时间: 2013-12-24
上传用户:wqxstar
本题的算法中涉及的三个函数: double bbp(int n,int k,int l) 其中n为十六进制位第n位,k取值范围为0到n+7,用来计算16nS1,16nS2,16nS3,16nS4小数部分的每一项。返回每一项的小数部分。 void pi(int m,int n,int p[]) 计算从n位开始的连续m位的十六进制数字。其中p为存储十六进制数字的数组。 void div(int p[]) void add(int a[],int b[]) 这两个函数都是为最后把十六进制数字转换为十进制数字服务的。 最后把1000个数字分别存储在整型数组r[]中,输出就是按顺序输出该数组。
上传时间: 2014-01-05
上传用户:xcy122677
电动机拖动simulink模型,调节pi控制器的参数模拟控制效果,另附程序运行结果图
上传时间: 2015-12-23
上传用户:wfl_yy
在0 / 1背包问题中,需对容量为c 的背包进行装载。从n 个物品中选取装入背包的物品,每件物品i 的重量为wi ,价值为pi 。对于可行的背包装载,背包中物品的总重量不能超过背包的容量,最佳装载是指所装入的物品价值最高,即p1*x1+p2*x1+...+pi*xi(其1<=i<=n,x取0或1,取1表示选取物品i) 取得最大值。
标签: 背包问题
上传时间: 2014-06-03
上传用户:myworkpost
*--- --- --- --声明--- --- --- -----*/ /* VC6.0下运行通过 此程序为本人苦心所做,请您在阅读的时候,尊重本人的 劳动。可以修改,但当做的每一处矫正或改进时,请将改进 方案,及修改部分发给本人 (修改部分请注名明:修改字样) Email: jink2005@sina.com QQ: 272576320 ——初稿完成:06-5-27 jink2005 补充: 程序存在问题: (1) follow集不能处理:U->xVyVz的情况 (2) 因本人偷懒,本程序为加入文法判断,故 输入的文法必须为LL(1)文法 (3) 您可以帮忙扩充:消除左递归,提取公因子等函数 (4) …… */ /*-----------------------------------------------*/ /*参考书《计算机编译原理——编译程序构造实践》 LL(1)语法分析,例1: ERTWF# +*()i# 文法G[E]:(按此格式输入) 1 E -> TR 2 R -> +TR 3 R -> 4 T -> FW 5 W -> * FW 6 W -> 7 F -> (E) 8 F -> i 分析例句:i*(i)# , i+i# 例2: 编译书5.6例题1 SHMA# adbe# S->aH H->aMd H->d M->Ab M-> A->aM A->e 分析例句:aaabd# */
上传时间: 2016-02-08
上传用户:ayfeixiao
On-Line MCMC Bayesian Model Selection This demo demonstrates how to use the sequential Monte Carlo algorithm with reversible jump MCMC steps to perform model selection in neural networks. We treat both the model dimension (number of neurons) and model parameters as unknowns. The derivation and details are presented in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Sequential Bayesian Estimation and Model Selection Applied to Neural Networks . Technical report CUED/F-INFENG/TR 341, Cambridge University Department of Engineering, June 1999. After downloading the file, type "tar -xf version2.tar" to uncompress it. This creates the directory version2 containing the required m files. Go to this directory, load matlab5 and type "smcdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters.
标签: demonstrates sequential Selection Bayesian
上传时间: 2016-04-07
上传用户:lindor
异步电机矢量控制程序,包括坐标变换,电流采样,pi调节等功能,用的是汇编语言
上传时间: 2014-06-05
上传用户:koulian
This demo nstrates how to use the sequential Monte Carlo algorithm with reversible jump MCMC steps to perform model selection in neural networks. We treat both the model dimension (number of neurons) and model parameters as unknowns. The derivation and details are presented in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Sequential Bayesian Estimation and Model Selection Applied to Neural Networks . Technical report CUED/F-INFENG/TR 341, Cambridge University Department of Engineering, June 1999. After downloading the file, type "tar -xf version2.tar" to uncompress it. This creates the directory version2 containing the required m files. Go to this directory, load matlab5 and type "smcdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters.
标签: sequential reversible algorithm nstrates
上传时间: 2014-01-18
上传用户:康郎
This demo nstrates the use of the reversible jump MCMC algorithm for neural networks. It uses a hierarchical full Bayesian model for neural networks. This model treats the model dimension (number of neurons), model parameters, regularisation parameters and noise parameters as random variables that need to be estimated. The derivations and proof of geometric convergence are presented, in detail, in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Robust Full Bayesian Learning for Neural Networks. Technical report CUED/F-INFENG/TR 343, Cambridge University Department of Engineering, May 1999. After downloading the file, type "tar -xf rjMCMC.tar" to uncompress it. This creates the directory rjMCMC containing the required m files. Go to this directory, load matlab5 and type "rjdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters.
标签: reversible algorithm the nstrates
上传时间: 2014-01-08
上传用户:cuibaigao