Power over Ethernet (PoE) is a new development thatallows for the delivery of power to Ethernet-based devicesvia standard Ethernet CAT5 cable, precluding the Need forwall adapters or other external power sources. The PoEspecification defines a hardware detection protocol wherePower Sourcing Equipment (PSE) is able to identify PoEPowered Devices (PDs), thus allowing full backwardscompatibility with non-PoE-aware (legacy) Ethernetdevices.
上传时间: 2013-11-11
上传用户:daoyue
Low power standby requirements are typically associatedwith battery-powered systems. Automotive systems,for example, commonly require power supplies tomaintain output voltage regulation even under no-loadconditions—while drawing minimal quiescent current topreserve battery life. Rising energy costs, however, haveextended the Need for low current standby operation toline-powered systems, such as small plugged-in appliancesfor home and business.
上传时间: 2013-11-20
上传用户:xinyuzhiqiwuwu
To this day, Power over Ethernet (PoE) continues to gainpopularity in today’s networking world. The 12.95Wdelivered to the Powered Device (PD) input supplied bythe Power Sourcing Equipment (PSE) is a universal supply.Each PD provides its own DC/DC conversion from anominal 48V supply, thus eliminating the Need for a correctvoltage wall adapter. However, higher power devicescan not take advantage of standard PoE because of itspower limitations, and must rely on a large wall adapteras their primary supply. The new LTC4268-1 breaks thispower barrier by allowing for power of up to 35W for suchpower-hungry 2-pair PoE applications. The LTC4268-1provides a complete solution by integrating a high powerPD interface control with an isolated fl yback controller.
上传时间: 2014-12-24
上传用户:jasson5678
Advances in low power electronics now allow placementof battery-powered sensors and other devices in locationsfar from the power grid. Ideally, for true grid independence,the batteries should not Need replacement, but instead berecharged using locally available renewable energy, suchas solar power. This Design Note shows how to producea compact battery charger that operates from a small2-cell solar panel. A unique feature of this design is thatthe DC/DC converter uses power point control to extractmaximum power from the solar panel.
上传时间: 2014-01-20
上传用户:wettetw
Many system designers Need an easy way to producea negative 3.3V power supply. In systems that alreadyhave a transformer, one option is to swap out the existingtransformer with one that has an additional secondarywinding. The problem with this solution is that manysystems now use transformers that are standard, offthe-shelf components, and most designers want toavoid replacing a standard, qualifi ed transformer with acustom version. An easier alternative is to produce thelow negative voltage rail by stepping down an existingnegative rail. For example, if the system already employsan off-the-shelf transformer with two secondary windingsto produce ±12V, and a –3.3V rail is Needed, a negativebuck converter can produce the –3.3V output from the–12V rail.
上传时间: 2013-10-09
上传用户:Jerry_Chow
High voltage buck DC/DC controllers such as the LTC3890(dual output) and LTC3891 (single output) are popular inautomotive applications due to their extremely wide 4V to60V input voltage range, eliminating the Need for a snubberand voltage suppression circuitry. These controllersare also well suited for 48V telecom applications whereno galvanic isolation is required.
上传时间: 2013-10-31
上传用户:wwwe
Notebook and palmtop systems Need a multiplicity ofregulated voltages developed from a single battery. Smallsize, light weight, and high efficiency are mandatory forcompetitive solutions in this area. Small increases inefficiency extend battery life, making the final productmuch more usable with no increase in weight. Additionally,high efficiency minimizes the heat sinks Needed onthe power regulating components, further reducing systemweight and size.
上传时间: 2013-11-11
上传用户:大三三
介绍基于VHDL的微型打印机控制器的设计。论述了微型打印机的基本原理,以及实现控制器的VHDL语言设计。打印机的数据来自系统中的存储模块,根据需要控制打印。该微型打印机控制器可取代传统的微型打印机,且抗干扰性好,可靠性高,具有较强的移植性,稍加改动就可应用于不同场合。 Abstract: This paper introduced the design method of micro printer controller based on VHDL.The basic principles of microprinter is explained,as well as the realization of the controller by VHDL language.The printer data is from the system memory modules,can control printer.The design of microprinter controller has antigood and high reliability,it can replace the traditional printer.The controller has very good portability,and Need little modify that can use in different situation.
上传时间: 2013-11-03
上传用户:dudu1210004
针对众多低成本数据采集需求,采用带有片上USB控制器和D/A转换器的混合信号微处理器C8051F340,设计了一款可通过USB接口和LabVIEW图形用户界面实现与PC机联机的数据采集器,同时借助系统的SD卡存储独立实现现场长时间采集数据。该数据采集器成本低,结构简单,体积小,已成功用于工业现场。 Abstract: Aiming at the Need of low cost data acquisition, a data acquisition device is designed based on C8051F340 which is a mixed-signal microcontroller and integrates USB controller and A/D controller on a chip.The data acquisition device which can combine with PC by USB interface and LabVIEW graphical user interface,can realize data acquisition. At the same time,it can be solely run a long time in virtue of SD card in field.The date aequisition device features low cost,simple structure and little sharp, and it has been used in industry field.
上传时间: 2014-05-31
上传用户:1109003457
为了解决磁放大器性能测试过程中,需要对其供给不同数值恒定电流的问题,设计了一种基于DAC7512和单片机的数控恒流源系统。该系统采用AT89C51作为主控器件,将计算机发送的电流控制字命令转换为D/A转换器控制字,通过模拟SPI通信接口,写D/A控制字到DAC7512,从而控制其输出相应数字电压值,经差动缩放电路、电压/电路变换电路和功率驱动电路,最后输出恒定电流。实验结果表明,恒流源输出电流调节范围为-45~+45 mA、精度为±0.1 mA,分辨率达0.024 4 mA,具有应用灵活,外围电路简单,可靠性高的特点。该数控直流恒流源也可为相关产品的测试系统研发提供参考。 Abstract: In order to solve the Need to supply different values constant current for the magnetic amplifier in testing process, numerical control constant current source system was designed based on DAC7512 chip and microcontroller technology. The system used the AT89C51 as the main chip, which can convert the current control word from computer into to D/A control words. And the system wrote D/A control word into the DAC7512 chip to control the output voltage value by the SPI communication interface, which can output corresponding constant current figures by scaling circuit, the V/I converter and power drive circuit. Experimental results show that the current source output current adjustment range is -45~+45mA, accuracy is ± 0.1mA, and resolution ratio is 0.024 4mA
上传时间: 2014-12-27
上传用户:invtnewer