The NXP LPC315x combine an 180 MHz ARM926EJ-S CPU core, High-speed USB 2.0OTG, 192 KB SRAM, NAND flash controller, flexible external bus interface, an integratedaudio codec, Li-ion charger, Real-Time Clock (RTC), and a myriad of serial and parallelinterfaces in a single chip targeted at consumer, industrial, medical, and communicationmarkets. To optimize system power consumption, the LPC315x have multiple powerdomains and a very flexible Clock Generation Unit (CGU) that provides dynamic clockgating and scaling.The LPC315x is implemented as multi-chip module with two side-by-side dies, one fordigital fuctions and one for analog functions, which include a Power Supply Unit (PSU),audio codec, RTC, and Li-ion battery charger.
上传时间: 2014-01-17
上传用户:Altman
Today in many applications such as network switches, routers, multi-computers,and processor-memory interfaces, the ability to integrate hundreds of multi-gigabit I/Os is desired to make better use of the rapidly advancing IC technology.
上传时间: 2013-10-30
上传用户:ysjing
ARM通讯 H-JTAG 是一款简单易用的的调试代理软件,功能和流行的MULTI-ICE 类似。H-JTAG 包括两个工具软件:H-JTAG SERVER 和H-FLASHER。其中,H-JTAG SERVER 实现调试代理的功能,而H-FLASHER则实现了FLASH 烧写的功能。H-JTAG 的基本结构如下图1-1所示。 H-JTAG支持所有基于ARM7 和ARM9的芯片的调试,并且支持大多数主流的ARM调试软件,如ADS、RVDS、IAR 和KEIL。通过灵活的接口配置,H-JTAG 可以支持WIGGLER,SDT-JTAG 和用户自定义的各种JTAG 调试小板。同时,附带的H-FLASHER 烧写软件还支持常用片内片外FLASH 的烧写。使用H-JTAG,用户能够方便的搭建一个简单易用的ARM 调试开发平台。H-JTAG 的功能和特定总结如下: 1. 支持 RDI 1.5.0 以及 1.5.1; 2. 支持所有ARM7 以及 ARM9 芯片; 3. 支持 THUMB 以及ARM 指令; 4. 支持 LITTLE-ENDIAN 以及 BIG-ENDIAN; 5. 支持 SEMIHOSTING; 6. 支持 WIGGLER, SDT-JTAG和用户自定义JTAG调试板; 7. 支持 WINDOWS 9.X/NT/2000/XP; 8.支持常用FLASH 芯片的编程烧写; 9. 支持LPC2000 和AT91SAM 片内FLASH 的自动下载;
上传时间: 2014-12-01
上传用户:Miyuki
中文版详情浏览:http://www.elecfans.com/emb/fpga/20130715324029.html Xilinx UltraScale:The Next-Generation Architecture for Your Next-Generation Architecture The Xilinx® UltraScale™ architecture delivers unprecedented levels of integration and capability with ASIC-class system- level performance for the most demanding applications. The UltraScale architecture is the industr y's f irst application of leading-edge ASIC architectural enhancements in an All Programmable architecture that scales from 20 nm planar through 16 nm FinFET technologies and beyond, in addition to scaling from monolithic through 3D ICs. Through analytical co-optimization with the X ilinx V ivado® Design Suite, the UltraScale architecture provides massive routing capacity while intelligently resolving typical bottlenecks in ways never before possible. This design synergy achieves greater than 90% utilization with no performance degradation. Some of the UltraScale architecture breakthroughs include: • Strategic placement (virtually anywhere on the die) of ASIC-like system clocks, reducing clock skew by up to 50% • Latency-producing pipelining is virtually unnecessary in systems with massively parallel bus architecture, increasing system speed and capability • Potential timing-closure problems and interconnect bottlenecks are eliminated, even in systems requiring 90% or more resource utilization • 3D IC integration makes it possible to build larger devices one process generation ahead of the current industr y standard • Greatly increased system performance, including multi-gigabit serial transceivers, I/O, and memor y bandwidth is available within even smaller system power budgets • Greatly enhanced DSP and packet handling The Xilinx UltraScale architecture opens up whole new dimensions for designers of ultra-high-capacity solutions.
标签: UltraScale Xilinx 架构
上传时间: 2013-11-21
上传用户:wxqman
Today’s digital systems combine a myriad of chips with different voltage configurations.Designers must interface 2.5V processors with 3.3V memories—both RAM and ROM—as wellas 5V buses and multiple peripheral chips. Each chip has specific power supply needs. CPLDsare ideal for handling the multi-voltage interfacing, but do require forethought to ensure correctoperation.
上传时间: 2013-11-10
上传用户:yy_cn
This application note provides a functional description of VHDL source code for a N x N DigitalCrosspoint Switch. The code is designed with eight inputs and eight outputs in order to targetthe 128-macrocell CoolRunner™-II CPLD device but can be easily expanded to target higherdensity devices. To obtain the VHDL source code described in this document, go to sectionVHDL Code, page 5 for instructions.
标签: CoolRunner-II XAPP CPLD 380
上传时间: 2013-10-26
上传用户:kiklkook
The Virtex-4 features, such as the programmable IDELAY and built-in FIFO support, simplifythe bridging of a high-speed, PCI-X core to large amounts of DDR-SDRAM memory. Onechallenge is meeting the PCI-X target initial latency specification. PCI-X Protocol Addendum tothe PCI Local Bus Specification Revision 2.0a ([Ref 6]) dictates that when a target signals adata transfer, "the target must do so within 16 clocks of the assertion of FRAME#." PCItermination transactions, such as Split Response/Complete, are commonly used to meet thelatency specifications. This method adds complexity to the design, as well as additional systemlatency. Another solution is to increase the ratio of the memory frequency to the PCI-X busfrequency. However, this solution increases the required power and clock resource usage.
上传时间: 2013-11-24
上传用户:18707733937
UG157 - LogiCORE™ IP Initiator/Target v3.1 for PCI™ 入门指南
上传时间: 2013-10-13
上传用户:heheh
针对在xPC平台下开发的实时仿真系统依赖于MATLAB环境,影响其在工程实践中推广应用的问题,提出了一种基于xPC Target和LabWindows/CVI的实时仿真系统设计方法。采用该方法设计的仿真系统,实现了独立的宿主机程序,同时利用LabWindows/CVI虚拟仪器技术开发出了主控台仿真软件。经仿真验证,该系统具备仿真步长1 ms,数据通讯周期20 ms,显示更新周期20 ms的实时仿真能力。仿真系统界面友好且易于操作,为xPC平台下的实时仿真系统在工程实际的应用提供了有益参考。
上传时间: 2013-10-10
上传用户:cepsypeng
The data plane of the reference design consists of a configurable multi-channel XBERT modulethat generates and checks high-speed serial data transmitted and received by the MGTs. Eachchannel in the XBERT module consists of two MGTs (MGTA and MGTB), which physicallyoccupy one MGT tile in the Virtex-4 FPGA. Each MGT has its own pattern checker, but bothMGTs in a channel share the same pattern generator. Each channel can load a differentpattern. The MGT serial rate depends on the reference clock frequency and the internal PMAdivider settings. The reference design can be scaled anywhere from one channel (two MGTs)to twelve channels (twenty-four MGTs).
上传时间: 2013-12-25
上传用户:jkhjkh1982