虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

F-counter

  • 模拟退火算法来源于固体退火原理

    模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。

    标签: 模拟退火算法

    上传时间: 2015-04-24

    上传用户:R50974

  • 模拟退火算法来源于固体退火原理

    模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。

    标签: 模拟退火算法

    上传时间: 2015-04-24

    上传用户:ryb

  • 模拟退火算法来源于固体退火原理

    模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。

    标签: 模拟退火算法

    上传时间: 2014-12-19

    上传用户:TRIFCT

  • 分而治之方法还可以用于实现另一种完全不同的排序方法

    分而治之方法还可以用于实现另一种完全不同的排序方法,这种排序法称为快速排序(quick sort)。在这种方法中, n 个元素被分成三段(组):左段l e f t,右段r i g h t和中段m i d d l e。中段仅包含一个元素。左段中各元素都小于等于中段元素,右段中各元素都大于等于中段元素。因此l e f t和r i g h t中的元素可以独立排序,并且不必对l e f t和r i g h t的排序结果进行合并。m i d d l e中的元素被称为支点( p i v o t )。图1 4 - 9中给出了快速排序的伪代码

    标签: 排序

    上传时间: 2015-04-27

    上传用户:kristycreasy

  • A Java virtual machine instruction consists of an opcode specifying the operation to be performed, f

    A Java virtual machine instruction consists of an opcode specifying the operation to be performed, followed by zero or more operands embodying values to be operated upon. This chapter gives details about the format of each Java virtual machine instruction and the operation it performs.

    标签: instruction specifying operation performed

    上传时间: 2014-01-11

    上传用户:yiwen213

  • A Java virtual machine instruction consists of an opcode specifying the operation to be performed, f

    A Java virtual machine instruction consists of an opcode specifying the operation to be performed, followed by zero or more operands embodying values to be operated upon. This chapter gives details about the format of each Java virtual machine instruction and the operation it performs.

    标签: instruction specifying operation performed

    上传时间: 2015-05-02

    上传用户:daoxiang126

  • A Java virtual machine instruction consists of an opcode specifying the operation to be performed, f

    A Java virtual machine instruction consists of an opcode specifying the operation to be performed, followed by zero or more operands embodying values to be operated upon. This chapter gives details about the format of each Java virtual machine instruction and the operation it performs.

    标签: instruction specifying operation performed

    上传时间: 2015-05-02

    上传用户:shawvi

  • A Java virtual machine instruction consists of an opcode specifying the operation to be performed, f

    A Java virtual machine instruction consists of an opcode specifying the operation to be performed, followed by zero or more operands embodying values to be operated upon. This chapter gives details about the format of each Java virtual machine instruction and the operation it performs.

    标签: instruction specifying operation performed

    上传时间: 2013-12-12

    上传用户:朗朗乾坤

  • 设计说明:1。数据结构和表示:程序用1、2、3、4分别表示将右、上、左、下的数字块移动到空格之中。采用典型的树+链表结构

    设计说明:1。数据结构和表示:程序用1、2、3、4分别表示将右、上、左、下的数字块移动到空格之中。采用典型的树+链表结构,每种局面产生一个BoardState类。出于避免走法顺序列表被过多复制的考虑,在树结构中保存局面的继承关系。每种新的局面产生后,引用估值函数产生f的值,再根据大小将其插入链表之中,以便实现“优先展开f值小的节点”。Solve()函数在成功解决问题之后保存一个走法序列供输出并返回零,而失败则返回失败处的节点层数。(具体的判断方法见后文)

    标签: 数据结构 典型 数字

    上传时间: 2015-05-02

    上传用户:xieguodong1234

  • 本程序用资源分配网(Resource_Allocation Network,简称RAN)实现了Hermit多项式在线学习问题。训练样本产生方式如下

    本程序用资源分配网(Resource_Allocation Network,简称RAN)实现了Hermit多项式在线学习问题。训练样本产生方式如下,样本数400,每个样本输入Xi在区间[-4,4]内随机产生(均匀分布),相关样本输出为F(Xi) = 1.1(1-Xi + Xi2)exp(-Xi2/2),测试样本输入在[-4,+4]内以0.04为间隔等距产生,共201个样本。训练结束后的隐节点为:11个,训练结束后的平均误差可达:0.03

    标签: Resource_Allocation Network Hermit RAN

    上传时间: 2014-01-14

    上传用户:pompey