虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

Every

  • Densely Connected Convolutional Networks

    Recent work has shown that convolutional networks can be substantially deeper, more accurate, and efficient to train if they contain shorter connections between layers close to the input and those close to the output. In this paper, we embrace this observation and introduce the Dense Convo- lutional Network (DenseNet), which connects each layer to Every other layer in a feed-forward fashion.

    标签: Convolutional Connected Networks Densely

    上传时间: 2020-06-10

    上传用户:shancjb

  • 基于传感器和模糊规则的机器人在动态障碍环境中的智能运动控制

    基于传感器和模糊规则的机器人在动态障碍环境中的智能运动控制基于传感器和模糊规则的机器人在动态障碍环境中的智能运动控制 oIlI~0(、r> 王 敏 金·波斯科 黄心汉 ,O、l、L (华i 面面辜写j幕.武汉,43074) \I。L上、o 捌要:提出了一种基于传感器和模糊规则的智能机器人运动规划方法 .该方法运用了基于调和函数分析的人 工势能 场原 理 .采用模糊规则 可减少推导势能函数所 必须的计算 ,同时给机器人伺服 系统发 出指令 ,使它能够 自动 地寻找通向目标的路径.提出的方法具有简单、快速的特点,而且能对 n自由度机械手的整个手臂实现最碰.建立 在非线性机器人动力学之上的整 个闭环系统和模糊控制器 的稳定性 由李雅普诺 夫原理 保证 .仿真结 果证明 了该方 法 的有效性 ,通 过比较分析显示 出文 中所提 出的最障算法的优越性 . 美t词:基于传感器的机器人运动控制;模糊规则;人工势能场;动态避障;机器人操作手 1 叫哑oducd0n R。boIsarewjdelyusedfor诅sb inchasma~ia]b柚· 血 , spot : ng, spray Ijl岫 1g, mech卸icaland elec咖 icas搴enlb1y,ma al埘 IIovaland wa时 cut· ring 咖 . ofsuch tasks_堋 llldea pri|柚ary ptd 眦 of 她 ar0botto e oncpositiontoanother withoutbur叩inginto anyobstacles. s 曲km,de. notedasthefDbotm ∞ pJan,liDgp∞ 舶1,hasbeen the倒 娜bj0ct锄l哪gIeseat℃ll∞ . Every method o0血∞rI1ing 如b0tmotionplanninghas itsownadv∞ngesandapplicationdoma~ asweftasits di戤ldvaIIta麟 and constr~dnts. Therefore it would be ratherdifficulteithertoc0Ⅱ】paremethodsorton~ vate thechoio~ofan dl0‘iupon othP~s. 0州 d眦 :1999—07—29;Revised~ :2000一∞ 一丝 In conU~astto many n~ hods,rob

    标签: 传感器 机器人

    上传时间: 2022-02-15

    上传用户: