构造哈夫曼树 哈弗曼树中没有度为一的节点,是标准的二叉树,所以有n个叶子结点时,需要一个长度为2n-1的一维数组存储哈弗曼树的结点。 (1)、n个叶子节点只有weight权值,处理非叶子节点,从ht[i](ht[1]~ht[n-1])中找到ht[i].weight最小的两个节点ht[s1]和ht[s2],这就是Select(int n,int &s1,int & s2,HTNode *ht)函数完成的功能。 (2)、调用select函数,并将ht[s1]和ht[s2]作为ht[l]的左右子树,即ht[s1]和ht[s2]双亲节点为ht[l],新的根节点的权值为其左右子树权值之和, ht[l].weight=ht[s1].weight+ht[s2].weight
上传时间: 2016-06-13
上传用户:ztj182002
ofdm信道特性 Channel transmission simulator Channel transmission simulator % % inputs: % sig2 - noise variance % Mt - number of Tx antennas % Mr - number of Rx antennas % x - vector of complex input symbols (for MIMO, this is a matrix, where each column % is the value of the antenna outputs at a single time instance) % H - frequency selective channel - represented in block-Toeplitz form for MIMO transmission % N - number of symbols transmitted in OFDM frame % % outputs: % y - vector of channel outputs (matrix for MIMO again, just like x matrix) % create noise vector sequence (each row is a different antenna, each column is a % different time index) note: noise is spatially and temporally white
标签: transmission simulator Channel inputs
上传时间: 2016-07-22
上传用户:kelimu
学上的基本神经元,人工的神经网络也有基本的神经元。每个神经元有特定数量的输入,也会为每个神经元设定权重(weight)。权重是对所输入的资料的重要性的一个指标。然后,神经元会计算出权重合计值(net value),而权重合计值就是将所有输入乘以它们的权重的合计。每个神经元都有它们各自的临界值(threshold),而当权重合计值大于临
标签:
上传时间: 2014-06-06
上传用户:luke5347
j2me设计的界面包,很漂亮实用。 light weight UI toolkit
标签: j2me
上传时间: 2013-12-21
上传用户:kristycreasy
* The keyboard is assumed to be a matrix having 4 rows by 6 columns. However, this code works for any * matrix arrangements up to an 8 x 8 matrix. By using from one to three of the column inputs, the driver * can support "SHIFT" keys. These keys are: SHIFT1, SHIFT2 and SHIFT3.
标签: keyboard However assumed columns
上传时间: 2016-11-14
上传用户:ardager
编写一个Java程序,设计一个运输工具类Transport,包含的成员属性有:速度pace、载重量load;汽车类Vehicle是Transport的子类,其中包含的属性有:车轮的个数wheels和车重weight;飞机Airplane类是Transport的子类其中包含的属性有:机型enginertype和发动机数量enginers。每个类都有相关所有数据的输出方法。
上传时间: 2016-11-16
上传用户:miaochun888
This function calculates Akaike s final prediction error % estimate of the average generalization error. % % [FPE,deff,varest,H] = fpe(NetDef,W1,W2,PHI,Y,trparms) produces the % final prediction error estimate (fpe), the effective number of % weights in the network if the network has been trained with % weight decay, an estimate of the noise variance, and the Gauss-Newton % Hessian. %
标签: generalization calculates prediction function
上传时间: 2014-12-03
上传用户:maizezhen
% Train a two layer neural network with the Levenberg-Marquardt % method. % % If desired, it is possible to use regularization by % weight decay. Also pruned (ie. not fully connected) networks can % be trained. % % Given a set of corresponding input-output pairs and an initial % network, % [W1,W2,critvec,iteration,lambda]=marq(NetDef,W1,W2,PHI,Y,trparms) % trains the network with the Levenberg-Marquardt method. % % The activation functions can be either linear or tanh. The % network architecture is defined by the matrix NetDef which % has two rows. The first row specifies the hidden layer and the % second row specifies the output layer.
标签: Levenberg-Marquardt desired network neural
上传时间: 2016-12-27
上传用户:jcljkh
This function calculates Akaike s final prediction error % estimate of the average generalization error for network % models generated by NNARX, NNOE, NNARMAX1+2, or their recursive % counterparts. % % [FPE,deff,varest,H] = nnfpe(method,NetDef,W1,W2,U,Y,NN,trparms,skip,Chat) % produces the final prediction error estimate (fpe), the effective number % of weights in the network if it has been trained with weight decay, % an estimate of the noise variance, and the Gauss-Newton Hessian. %
标签: generalization calculates prediction function
上传时间: 2016-12-27
上传用户:脚趾头
This software is a Matlab implementation of restricted sampling from Gaussian distribution, and sample x (column vector) from N(x_mu, x_var), restricted in x_min<=x<=x_max.
标签: implementation distribution restricted Gaussian
上传时间: 2016-12-30
上传用户:6546544