搜索结果
找到约 15 项符合
Clusters 的查询结果
按分类筛选
生物技术 这次上传的代码是关于K-means clusters的代码
这次上传的代码是关于K-means clusters的代码,希望能对大家有用。
并行计算 How the K-mean Cluster work Step 1. Begin with a decision the value of k = number of clusters S
How the K-mean Cluster work
Step 1. Begin with a decision the value of k = number of clusters
Step 2. Put any initial partition that classifies the data into k clusters. You may assign the training samples randomly, or systematically as the following:
Take the first k training sample as single-e ...
数值算法/人工智能 The last step in training phase is refinement of the clusters found above. Although DynamicClusteri
The last step in training phase is refinement of the clusters
found above. Although DynamicClustering counters all the
basic k-means disadvantages, setting the intra-cluster similarity
r may require experimentation. Also, a cluster may
have a lot in common with another, i.e., sequences assigned
to i ...
数值算法/人工智能 Determination of number of clusters in K-Means Clustering and Application in color image segmenta
Determination of number of clusters in K-Means Clustering and Application in color image segmenta
其他书籍 High.Performance.Linux.Clusters.With.Oscar.Rocks.openmosix.And.Mpi.2004--介绍linux集群的好书(英文版)
High.Performance.Linux.Clusters.With.Oscar.Rocks.openmosix.And.Mpi.2004--介绍linux集群的好书(英文版),希望大家喜欢
matlab例程 clustering matlab code,check the number of clusters alive at certain iterations
clustering matlab code,check the number of clusters alive at certain iterations
嵌入式/单片机编程 To identify distinguishable clusters of data in an n-dimensional pixel
To identify distinguishable clusters of data in an n-dimensional pixel
value image.
Given: Samples of multi-spectral satellite images
matlab例程 function [clusters,c,F]=fisher_classify(A,B,data) fisher判别法程序 输入A、B为已知类别样本的样本-变量矩阵
function [clusters,c,F]=fisher_classify(A,B,data)
fisher判别法程序
输入A、B为已知类别样本的样本-变量矩阵,data为待分类样本
输出C为判别系数向量
matlab例程 My version of k-means function. Improved so that there are no empty clusters after segmentation.
My version of k-means function. Improved so that there are no empty clusters after segmentation.
人工智能/神经网络 二维的DBSCAN聚类算法
二维的DBSCAN聚类算法,输入(x,y)数组,搜索半径Eps,密度搜索参数Minpts。输出: Clusters,每一行代表一个簇,形式为簇的对象对应的原数据集的ID