虫虫首页|资源下载|资源专辑|精品软件
登录|注册

Changing

  • This is the model of boost converter. The control of this converter is PID. With Changing the coffic

    This is the model of boost converter. The control of this converter is PID. With Changing the cofficient of the P-I and D a good replay can be supplied.

    标签: converter the Changing control

    上传时间: 2013-12-20

    上传用户:阿四AIR

  • the Gibbs phenomenon graphic in matlab , you can change the number of armonics by Changing the N val

    the Gibbs phenomenon graphic in matlab , you can change the number of armonics by Changing the N value

    标签: the phenomenon armonics Changing

    上传时间: 2017-09-24

    上传用户:ynwbosss

  • 基于IC卡的新型供暖计费系统设计

    将现行的供暖计费方式由按建筑面积计费变为按消耗的热能计费是供暖计费方式发展趋势,为了满足这一计费方式变化的需要,设计了基于IC卡的预付费式新型供暖计费系统,通过测量用户采暖系统进出口的温度和流量,计算用户消耗的热能,利用IC卡记录用户预付费的金额和当年热能的单价,根据热能消耗和当年热能的单价计算用户采暖费,根据实际发生的供暖费用和预付费金额控制供暖的开停,这一计费方式的变化使供暖计费更趋合理。 Abstract:  It is trend that the mode of heat charging is changed from billing by building area to by thermal energy. In order to meet the needs of heat charging mode Changing, a new system of heat charging based on IC card is proposed. The user?蒺s energy consumption is calculated by measuring the user inlet and outlet temperature and flow,using the IC card to record the prepaid amount and the current price of heat. The user?蒺s heating costs is calculated according to energy consumption and current price, according to actual heating costs and prepaid amount,the system controls the heating opening or stopping. It is more reasonable that calculated heating costs by user heat consumption

    标签: IC卡 计费 系统设计

    上传时间: 2013-10-14

    上传用户:大融融rr

  • 采用TÜV认证的FPGA开发功能安全系统

    This white paper discusses how market trends, the need for increased productivity, and new legislation have accelerated the use of safety systems in industrial machinery. This TÜV-qualified FPGA design methodology is Changing the paradigms of safety designs and will greatly reduce development effort, system complexity, and time to market. This allows FPGA users to design their own customized safety controllers and provides a significant competitive advantage over traditional microcontroller or ASIC-based designs. Introduction The basic motivation of deploying functional safety systems is to ensure safe operation as well as safe behavior in cases of failure. Examples of functional safety systems include train brakes, proximity sensors for hazardous areas around machines such as fast-moving robots, and distributed control systems in process automation equipment such as those used in petrochemical plants. The International Electrotechnical Commission’s standard, IEC 61508: “Functional safety of electrical/electronic/programmable electronic safety-related systems,” is understood as the standard for designing safety systems for electrical, electronic, and programmable electronic (E/E/PE) equipment. This standard was developed in the mid-1980s and has been revised several times to cover the technical advances in various industries. In addition, derivative standards have been developed for specific markets and applications that prescribe the particular requirements on functional safety systems in these industry applications. Example applications include process automation (IEC 61511), machine automation (IEC 62061), transportation (railway EN 50128), medical (IEC 62304), automotive (ISO 26262), power generation, distribution, and transportation. 图Figure 1. Local Safety System

    标签: FPGA 安全系统

    上传时间: 2013-11-05

    上传用户:维子哥哥

  • WP151 - Xilinx FPGA的System ACE配置解决方案

    Design techniques for electronic systems areconstantly Changing. In industries at the heart of thedigital revolution, this change is especially acute.Functional integration, dramatic increases incomplexity, new standards and protocols, costconstraints, and increased time-to-market pressureshave bolstered both the design challenges and theopportunities to develop modern electronic systems.One trend driving these changes is the increasedintegration of core logic with previously discretefunctions to achieve higher performance and morecompact board designs.

    标签: System Xilinx FPGA 151

    上传时间: 2014-12-28

    上传用户:康郎

  • WP150-解决数兆兆位及更高的网络挑战

      In today’s world of modular networking and telecommunications design, it is becomingincreasingly difficult to keep alignment with the many different and often Changing interfaces,both inter-board and intra-board. Each manufacturer has their own spin on the way in whichdevices are connected. To satisfy the needs of our customers, we must be able to support alltheir interface requirements. For us to be able to make products for many customers, we mustadopt a modular approach to the design. This modularity is the one issue that drives the majorproblem of shifting our bits from one modular interface to another.

    标签: 150 WP 兆兆 网络

    上传时间: 2013-11-25

    上传用户:suicone

  • S参数的设计与应用

    Agilent AN 154 S-Parameter Design Application Note S参数的设计与应用 The need for new high-frequency, solid-state circuitdesign techniques has been recognized both by microwaveengineers and circuit designers. These engineersare being asked to design solid state circuitsthat will operate at higher and higher frequencies.The development of microwave transistors andAgilent Technologies’ network analysis instrumentationsystems that permit complete network characterizationin the microwave frequency rangehave greatly assisted these engineers in their work.The Agilent Microwave Division’s lab staff hasdeveloped a high frequency circuit design seminarto assist their counterparts in R&D labs throughoutthe world. This seminar has been presentedin a number of locations in the United States andEurope.From the experience gained in presenting this originalseminar, we have developed a four-part videotape, S-Parameter Design Seminar. While the technologyof high frequency circuit design is everChanging, the concepts upon which this technologyhas been built are relatively invariant.The content of the S-Parameter Design Seminar isas follows:

    标签: S参数

    上传时间: 2013-12-19

    上传用户:aa54

  • 采用TÜV认证的FPGA开发功能安全系统

    This white paper discusses how market trends, the need for increased productivity, and new legislation have accelerated the use of safety systems in industrial machinery. This TÜV-qualified FPGA design methodology is Changing the paradigms of safety designs and will greatly reduce development effort, system complexity, and time to market. This allows FPGA users to design their own customized safety controllers and provides a significant competitive advantage over traditional microcontroller or ASIC-based designs. Introduction The basic motivation of deploying functional safety systems is to ensure safe operation as well as safe behavior in cases of failure. Examples of functional safety systems include train brakes, proximity sensors for hazardous areas around machines such as fast-moving robots, and distributed control systems in process automation equipment such as those used in petrochemical plants. The International Electrotechnical Commission’s standard, IEC 61508: “Functional safety of electrical/electronic/programmable electronic safety-related systems,” is understood as the standard for designing safety systems for electrical, electronic, and programmable electronic (E/E/PE) equipment. This standard was developed in the mid-1980s and has been revised several times to cover the technical advances in various industries. In addition, derivative standards have been developed for specific markets and applications that prescribe the particular requirements on functional safety systems in these industry applications. Example applications include process automation (IEC 61511), machine automation (IEC 62061), transportation (railway EN 50128), medical (IEC 62304), automotive (ISO 26262), power generation, distribution, and transportation. 图Figure 1. Local Safety System

    标签: FPGA 安全系统

    上传时间: 2013-11-14

    上传用户:zoudejile

  • WP151 - Xilinx FPGA的System ACE配置解决方案

    Design techniques for electronic systems areconstantly Changing. In industries at the heart of thedigital revolution, this change is especially acute.Functional integration, dramatic increases incomplexity, new standards and protocols, costconstraints, and increased time-to-market pressureshave bolstered both the design challenges and theopportunities to develop modern electronic systems.One trend driving these changes is the increasedintegration of core logic with previously discretefunctions to achieve higher performance and morecompact board designs.

    标签: System Xilinx FPGA 151

    上传时间: 2013-11-22

    上传用户:kangqiaoyibie

  • 基于Multisim 10的矩形波信号发生器仿真与实现

    在Multisim 10软件环境下,设计一种由运算放大器构成的精确可控矩形波信号发生器,结合系统电路原理图重点阐述了各参数指标的实现与测试方法。通过改变RC电路的电容充、放电路径和时间常数实现了占空比和频率的调节,通过多路开关投入不同数值的电容实现了频段的调节,通过电压取样和同相放大电路实现了输出电压幅值的调节并提高了电路的带负载能力,可作为频率和幅值可调的方波信号发生器。Multisim 10仿真分析及应用电路测试结果表明,电路性能指标达到了设计要求。 Abstract:  Based on Multisim 10, this paper designed a kind of rectangular-wave signal generator which could be controlled exactly composed of operational amplifier, the key point was how to implement and test the parameter indicators based on the circuit diagram. The duty and the frequency were adjusted by Changing the time constant and the way of charging and discharging of the capacitor, the width of frequency was adjusted by using different capacitors provided with multiple switch, the amplitude of output voltage was adjusted by sampling voltage and using in-phase amplifier circuit,the ability of driving loads was raised, the circuit can be used as squarewave signal generator whose frequency and amplitude can be adjusted. The final simulation results of Multisim 10 and the tests of applicable circuit show that the performance indicators of the circuit meets the design requirements.

    标签: Multisim 矩形波 信号发生器 仿真

    上传时间: 2014-01-21

    上传用户:shen007yue