HIGH SPEED 8051 μC CORE - Pipe-lined Instruction Architecture; Executes 70% of Instructions in 1 or 2 System Clocks - Up to 25MIPS Throughput with 25MHz System Clock - 22 Vectored Interrupt Sources MEMORY - 4352 Bytes Internal Data RAM (256 + 4k) - 64k Bytes In-System Programmable FLASH Program Memory - External Parallel Data Memory Interface – up to 5Mbytes/sec DIGITAL PERIPHERALS - 64 Port I/O; All are 5V tolerant - Hardware SMBusTM (I2CTM Compatible), SPITM, and Two UART Serial Ports Available Concurrently - Programmable 16-bit Counter/Timer Array with 5 Capture/Compare Modules - 5 General Purpose 16-bit Counter/Timers - Dedicated Watch-Dog Timer; Bi-directional Reset CLOCK SOURCES - Internal Programmable Oscillator: 2-to-16MHz - External Oscillator: Crystal, RC, C, or Clock - Real-Time Clock Mode using Timer 3 or PCA SUPPLY VOLTAGE ........................ 2.7V to 3.6V - Typical Operating Current: 10mA @ 25MHz - Multiple Power Saving Sleep and Shutdown Modes 100-Pin TQFP (64-Pin Version Available) Temperature Range: –40°C to +85°C
标签: C8051F020
上传时间: 2013-10-12
上传用户:lalalal
在开放式数控系统结构模型的基础上,研究了基于ISA总线的DSP通信控制原理。采用中断方式完成了PC机和DSP之间的通信。介绍了以DriverWorks为工具开发ISA设备WDM驱动程序的方法,探讨了中断处理、驱动程序与应用程序之间的通信,简要说明了驱动程序的安装与调试。通过调试,系统设计运行稳定。 Abstract: The ISA bus and DSP correspondence control principle is investigated in the basis of the existing open Architecture numerical control system.The interrupt method is used to realize the communication between PC and DSP based on the ISA bus.The methods of WDM driver exploitation for ISA device using Driver Works are introduced.The main process of driver program and the keys such as handle interrupt and the communication between the drivers and application are presented.And how to debug and install the drive is explained.
上传时间: 2013-11-04
上传用户:kang1923
第一章 序論……………………………………………………………6 1- 1 研究動機…………………………………………………………..7 1- 2 專題目標…………………………………………………………..8 1- 3 工作流程…………………………………………………………..9 1- 4 開發環境與設備…………………………………………………10 第二章 德州儀器OMAP 開發套件…………………………………10 2- 1 OMAP介紹………………………………………………………10 2-1.1 OMAP是什麼?…….………………………………….…10 2-1.2 DSP的優點……………………………………………....11 2- 2 OMAP Architecture介紹………………………………………...12 2-2-1 OMAP1510 硬體架構………………………………….…12 2-2.2 OMAP1510軟體架構……………………………………...12 2-2.3 DSP / BIOS Bridge簡述…………………………………...13 2- 3 TI Innovator套件 -- OMAP1510 ……………………………..14 2-2.1 General Purpose processor -- ARM925T………………...14 2-2.2 DSP processor -- TMS320C55x …………………………15 2-2.3 IDE Tool – CCS …………………………………………15 2-2.4 Peripheral ………………………………………………..16 第三章 在OMAP1510上建構Embedded Linux System…………….17 3- 1 嵌入式工具………………………………………………………17 3-1.1 嵌入式程式開發與一般程式開發之不同………….….17 3-1.2 Cross Compiling的GNU工具程式……………………18 3-1.3 建立ARM-Linux Cross-Compiling 工具程式………...19 3-1.4 Serial Communication Program………………………...20 3- 2 Porting kernel………………………………………………….…21 3-2.1 Setup CCS ………………………………………….…..21 3-2.2 編譯及上傳Loader…………………………………..…23 3-2.3 編譯及上傳Kernel…………………………………..…24 3- 3 建構Root File System………………………………………..…..26 3-3.1 Flash ROM……………………………………………...26 3-3.2 NFS mounting…………………………………………..27 3-3.3 支援NFS Mounting 的kernel…………………………..27 3-3.4 提供NFS Mounting Service……………………………29 3-3.5 DHCP Server……………………………………………31 3-3.6 Linux root 檔案系統……………………………….…..32 3- 4 啟動及測試Innovator音效裝置…………………………..…….33 3- 5 建構支援DSP processor的環境…………………………...……34 3-5.1 Solution -- DSP Gateway簡介……………………..…34 3-5.2 DSP Gateway運作架構…………………………..…..35 3- 6 架設DSP Gateway………………………………………….…36 3-6.1 重編kernel……………………………………………...36 3-6.2 DEVFS driver…………………………………….……..36 3-6.3 編譯DSP tool和API……………………………..…….37 3-6.4 測試……………………………………………….…….37 第四章 MP3 Player……………………………………………….…..38 4- 1 MP3 介紹………………………………………………….…….38 4- 2 MP3 壓縮原理……………………………………………….….39 4- 3 Linux MP3 player – splay………………………………….…….41 4.3-1 splay介紹…………………………………………….…..41 4.3-2 splay 編譯………………………………………….…….41 4.3-3 splay 的使用說明………………………………….……41 第五章 程式改寫………………………………………………...…...42 5-1 程式評估與改寫………………………………………………...…42 5-1.1 Inter-Processor Communication Scheme…………….....42 5-1.2 ARM part programming……………………………..…42 5-1.3 DSP part programming………………………………....42 5-2 程式碼………………………………………………………..……43 5-3 雙處理器程式開發注意事項…………………………………...…47 第六章 效能評估與討論……………………………………………48 6-1 速度……………………………………………………………...48 6-2 CPU負載………………………………………………………..49 6-3 討論……………………………………………………………...49 6-3.1分工處理的經濟效益………………………………...49 6-3.2音質v.s 浮點與定點運算………………………..…..49 6-3.3 DSP Gateway架構的限制………………………….…50 6-3.4減少IO溝通……………….………………………….50 6-3.5網路掛載File System的Delay…………………..……51 第七章 結論心得…
上传时间: 2013-10-14
上传用户:a471778
针对当前安检力学试验机所能完成的试验种类单一、自动化程度低等问题,提出一种以ATmega128单片机为核心控制器的安检力学试验机的设计。详细阐述了该安检力学试验机各个组成部分的设计原理和方案,并且给出了各部分的软件设计思想和操作流程。经过大量测试试验表明:设计的安检力学试验机可以完成多达十余种的力学安检试验,完全符合相关国家标准,并且具有数据采集精度高、传输速度快、操作安全简便等特点,实现了安检设备的多功能化、数字化和自动化。 Abstract: Currently, many mechanical security testing machines have only one function. The degree of automation of them is low. To solve those problems, a new kind of mechanical security testing machine, using ATmega128 micro-controller as its core controller, has been advanced. It describes the components of the machine. The principles and the scheme in the designing processes are presented in detail, and the software Architecture and the operation processes of each part are given. After having done many testing, we have reached the following conclusions: the mechanical security testing machine presented can do over ten mechanical security tests complying with related national standards. It has high data acquisition accuracy and high transmission speed. The operation of the machine is simple and safe. In general, this machine is a multi-functional, highly automatic, digitalized security testing device.
上传时间: 2013-11-05
上传用户:a67818601
NXP Semiconductor designed the LPC2400 microcontrollers around a 16-bit/32-bitARM7TDMI-S CPU core with real-time debug interfaces that include both JTAG andembedded Trace. The LPC2400 microcontrollers have 512 kB of on-chip high-speedFlash memory. This Flash memory includes a special 128-bit wide memory interface andaccelerator Architecture that enables the CPU to execute sequential instructions fromFlash memory at the maximum 72 MHz system clock rate. This feature is available onlyon the LPC2000 ARM Microcontroller family of products. The LPC2400 can execute both32-bit ARM and 16-bit Thumb instructions. Support for the two Instruction Sets meansEngineers can choose to optimize their application for either performance or code size atthe sub-routine level. When the core executes instructions in Thumb state it can reducecode size by more than 30 % with only a small loss in performance while executinginstructions in ARM state maximizes core performance.
上传时间: 2013-11-15
上传用户:zouxinwang
Luminary Micro Stellaris™ microcontrollers that are equipped with an analog-to-digital converter(ADC), use an innovative sequence-based sampling Architecture designed to be extremely flexible,yet easy to use. This application note describes the sampling Architecture of the ADC. Sinceprogrammers can configure Stellaris microcontrollers either through the powerful StellarisFamilyDriver Library or through direct writes to the device's control registers, this application note describesboth methods. The information presented in this document is intended to complement the ADCchapter of the device datasheet, and assumes the reader has a basic understanding of howADCsfunction.
标签: Microcontr Stellaris Using the
上传时间: 2013-10-14
上传用户:blans
MSP430系列超低功耗16位单片机原理与应用TI公司的MSP430系列微控制器是一个近期推出的单片机品种。它在超低功耗和功能集成上都有一定的特色,尤其适合应用在自动信号采集系统、液晶显示智能化仪器、电池供电便携式装置、超长时间连续工作设备等领域。《MSP430系列超低功耗16位单片机原理与应用》对这一系列产品的原理、结构及内部各功能模块作了详细的说明,并以方便工程师及程序员使用的方式提供软件和硬件资料。由于MSP430系列的各个不同型号基本上是这些功能模块的不同组合,因此,掌握《MSP430系列超低功耗16位单片机原理与应用》的内容对于MSP430系列的原理理解和应用开发都有较大的帮助。《MSP430系列超低功耗16位单片机原理与应用》的内容主要根据TI公司的《MSP430 Family Architecture Guide and Module Library》一书及其他相关技术资料编写。 《MSP430系列超低功耗16位单片机原理与应用》供高等院校自动化、计算机、电子等专业的教学参考及工程技术人员的实用参考,亦可做为应用技术的培训教材。MSP430系列超低功耗16位单片机原理与应用 目录 第1章 MSP430系列1.1 特性与功能1.2 系统关键特性1.3 MSP430系列的各种型号??第2章 结构概述2.1 CPU2.2 代码存储器?2.3 数据存储器2.4 运行控制?2.5 外围模块2.6 振荡器、倍频器和时钟发生器??第3章 系统复位、中断和工作模式?3.1 系统复位和初始化3.2 中断系统结构3.3 中断处理3.3.1 SFR中的中断控制位3.3.2 外部中断3.4 工作模式3.5 低功耗模式3.5.1 低功耗模式0和模式13.5.2 低功耗模式2和模式33.5.3 低功耗模式43.6 低功耗应用要点??第4章 存储器组织4.1 存储器中的数据4.2 片内ROM组织4.2.1 ROM表的处理4.2.2 计算分支跳转和子程序调用4.3 RAM与外围模块组织4.3.1 RAM4.3.2 外围模块--地址定位4.3.3 外围模块--SFR??第5章 16位CPU?5.1 CPU寄存器5.1.1 程序计数器PC5.1.2 系统堆栈指针SP5.1.3 状态寄存器SR5.1.4 常数发生寄存器CG1和CG2?5.2 寻址模式5.2.1 寄存器模式5.2.2 变址模式5.2.3 符号模式5.2.4 绝对模式5.2.5 间接模式5.2.6 间接增量模式5.2.7 立即模式5.2.8 指令的时钟周期与长度5.3 指令集概述5.3.1 双操作数指令5.3.2 单操作数指令5.3.3 条件跳转5.3.4 模拟指令的简短格式5.3.5 其他指令5.4 指令分布??第6章 硬件乘法器?6.1 硬件乘法器的操作6.2 硬件乘法器的寄存器6.3 硬件乘法器的SFR位6.4 硬件乘法器的软件限制6.4.1 硬件乘法器的软件限制--寻址模式6.4.2 硬件乘法器的软件限制--中断程序??第7章 振荡器与系统时钟发生器?7.1 晶体振荡器7.2 处理机时钟发生器7.3 系统时钟工作模式7.4 系统时钟控制寄存器7.4.1 模块寄存器7.4.2 与系统时钟发生器相关的SFR位7.5 DCO典型特性??第8章 数字I/O配置?8.1 通用端口P08.1.1 P0的控制寄存器8.1.2 P0的原理图8.1.3 P0的中断控制功能8.2 通用端口P1、P28.2.1 P1、P2的控制寄存器8.2.2 P1、P2的原理图8.2.3 P1、P2的中断控制功能8.3 通用端口P3、P48.3.1 P3、P4的控制寄存器8.3.2 P3、P4的原理图8.4 LCD端口8.5 LCD端口--定时器/端口比较器??第9章 通用定时器/端口模块?9.1 定时器/端口模块操作9.1.1 定时器/端口计数器TPCNT1--8位操作9.1.2 定时器/端口计数器TPCNT2--8位操作9.1.3 定时器/端口计数器--16位操作9.2 定时器/端口寄存器9.3 定时器/端口SFR位9.4 定时器/端口在A/D中的应用9.4.1 R/D转换原理9.4.2 分辨率高于8位的转换??第10章 定时器?10.1 Basic Timer110.1.1 Basic Timer1寄存器10.1.2 SFR位10.1.3 Basic Timer1的操作10.1.4 Basic Timer1的操作--LCD时钟信号fLCD?10.2 8位间隔定时器/计数器10.2.1 8位定时器/计数器的操作10.2.2 8位定时器/计数器的寄存器10.2.3 与8位定时器/计数器有关的SFR位10.2.4 8位定时器/计数器在UART中的应用10.3 看门狗定时器11.1.3 比较模式11.1.4 输出单元11.2 TimerA的寄存器11.2.1 TimerA控制寄存器TACTL11.2.2 捕获/比较控制寄存器CCTL11.2.3 TimerA中断向量寄存器11.3 TimerA的应用11.3.1 TimerA增计数模式应用11.3.2 TimerA连续模式应用11.3.3 TimerA增/减计数模式应用11.3.4 TimerA软件捕获应用11.3.5 TimerA处理异步串行通信协议11.4 TimerA的特殊情况11.4.1 CCR0用做周期寄存器11.4.2 定时器寄存器的启/停11.4.3 输出单元Unit0??第12章 USART外围接口--UART模式?12.1 异步操作12.1.1 异步帧格式12.1.2 异步通信的波特率发生器12.1.3 异步通信格式12.1.4 线路空闲多处理机模式12.1.5 地址位格式12.2 中断与控制功能12.2.1 USART接收允许12.2.2 USART发送允许12.2.3 USART接收中断操作12.2.4 USART发送中断操作12.3 控制与状态寄存器12.3.1 USART控制寄存器UCTL12.3.2 发送控制寄存器UTCTL12.3.3 接收控制寄存器URCTL12.3.4 波特率选择和调制控制寄存器12.3.5 USART接收数据缓存URXBUF12.3.6 USART发送数据缓存UTXBUF12.4 UART模式--低功耗模式应用特性12.4.1 由UART帧启动接收操作12.4.2 时钟频率的充分利用与UART模式的波特率12.4.3 节约MSP430资源的多处理机模式12.5 波特率的计算??第13章 USART外围接口--SPI模式?13.1 USART的同步操作13.1.1 SPI模式中的主模式--MM=1、SYNC=113.1.2 SPI模式中的从模式--MM=0、SYNC=113.2 中断与控制功能13.2.1 USART接收允许13.2.2 USART发送允许13.2.3 USART接收中断操作13.2.4 USART发送中断操作13.3 控制与状态寄存器13.3.1 USART控制寄存器13.3.2 发送控制寄存器UTCTL13.3.3 接收控制寄存器URCTL13.3.4 波特率选择和调制控制寄存器13.3.5 USART接收数据缓存URXBUF13.3.6 USART发送数据缓存UTXBUF??第14章 液晶显示驱动?14.1 LCD驱动基本原理14.2 LCD控制器/驱动器14.2.1 LCD控制器/驱动器功能14.2.2 LCD控制与模式寄存器14.2.3 LCD显示内存14.2.4 LCD操作软件例程14.3 LCD端口功能14.4 LCD与端口模式混合应用实例??第15章 A/D转换器?15.1 概述15.2 A/D转换操作15.2.1 A/D转换15.2.2 A/D中断15.2.3 A/D量程15.2.4 A/D电流源15.2.5 A/D输入端与多路切换15.2.6 A/D接地与降噪15.2.7 A/D输入与输出引脚15.3 A/D控制寄存器??第16章 其他模块16.1 晶体振荡器16.2 上电电路16.3 晶振缓冲输出??附录A 外围模块地址分配?附录B 指令集描述?B1 指令汇总B2 指令格式B3 不增加ROM开销的指令模拟B4 指令说明B5 用几条指令模拟的宏指令??附录C EPROM编程?C1 EPROM操作C2 快速编程算法C3 通过串行数据链路应用\"JTAG\"特性的EPROM模块编程C4 通过微控制器软件实现对EPROM模块编程??附录D MSP430系列单片机参数表?附录E MSP430系列单片机产品编码?附录F MSP430系列单片机封装形式?
上传时间: 2014-05-07
上传用户:lwq11
本文依据集成电路设计方法学,探讨了一种基于标准Intel 8086 微处理器的单芯片计算机平台的架构。研究了其与SDRAM,8255 并行接口等外围IP 的集成,并在对AMBA协议和8086 CPU分析的基础上,采用遵从AMBA传输协议的系统总线代替传统的8086 CPU三总线结构,搭建了基于8086 IP 软核的单芯片计算机系统,并实现了FPGA 功能演示。关键词:微处理器; SoC;单芯片计算机;AMBA 协议 Design of 8086 CPU Based Computer-on-a-chip System(School of Electrical Engineering and Automation, Heifei University of Technology, Hefei, 230009,China)Abstract: According to the IC design methodology, this paper discusses the design of one kind of Computer-on-a-chip system Architecture, which is based on the standard Intel8086 microprocessor,investigates how to integrate the 8086 CPU and peripheral IP such as, SDRAM controller, 8255 PPI etc. Based on the analysis of the standard Intel8086 microprocessor and AMBA Specification,the Computer-on-a-chip system based on 8086 CPU which uses AMBA bus instead of traditional three-bus structure of 8086 CPU is constructed, and the FPGA hardware emulation is fulfilled.Key words: Microprocessor; SoC; Computer-on-a-chip; AMBA Specification
上传时间: 2013-12-27
上传用户:kernor
多功能高集成外围器件6. 1 多功能高集成外围器件82371PCI的英文名称:Peripheral Component Interconnect (外围部件互联PCI总线);82371是PCI总线组件。ISA是:Industry Standard Architecture(工业标准体系结构)IDE是 (Integrated Device Electronics)集成电路设备简称PIIX4PIIX4器件(芯片)的特点1、是一种支持Pentium和PentiumII微处理器的部件。2、82371对ISA桥来说,是一种多功能PCI总线。3、对可移动性和桌面深绿色环境均提供支持。4、电源管理逻辑。5、被集成化的IDE控制器。6、增强了性能的DMA控制器。(7)基于两个82C59的中断控制器。(8)基于82C54芯片的定时器。(9)USB(Universal Serial Bus)通用串行总线。(10)SMBus系统管理总线。(11)实时时钟(12)顺应Microsoft Win95所需的功能其芯片的逻辑框图如图6-1所示。 PIIX4芯片逻辑框图6.1.1 概述PIIX4芯片是一个多功能的PCI器件,图6-2 是82371在系统中扮演的角色。(续上图)1. PCI与EIO之间的桥(PIIX4芯片)桥是不对程的,是各类不同标准总线与PCI总线连接,82371AB桥也可理解为一种总线转换译码器和控制器,桥内包含复杂的协议总线信号和缓冲器。(1).在PCI系统内,当PIIX4操作时,它总是作为系统内各种模块的主控设备,如USB和DMA控制器、IDE总线和分布式DMA的主控设备等,而且总是以ISA主控设备的名义出现。(2). 在向ISA总线或IDE总线进行传送操作的传送周期期间作为从属设备使用,并对内部寄存器译码。PIIX4芯片(桥)的配置(1).可以把PIIX4芯片配置成整个ISA总线,或ISA总线的子集,也可扩展成EIO总线。在使用EIO总线时,可以把未使用的信号配置成通用的输入和输出。(2).PIIX4可直接驱动5个ISA插槽;(3).能提供字节-交换逻辑、I/O的恢复支持、等待状态的生成以及SYSCLK的生成。(4).提供X-BUS键盘控制器芯片、BIOS芯片、实时时钟芯片、二级微程序器等的选择。2. IDE接口(总线主控设备的权利和同步DMA方式)IDE接口为4个IDE的设备提供支持,比如IDE接口的硬盘和CD-ROM等。注意:目前硬盘接口有5类:IDE、SCSI、Fibre Channel、IEEE1394和USB等。IDE口几乎在PC机最多,因为便宜。SCSI多用于服务器和集群机。IDE的PIO IDE速率:14MB/s;而总线主控设备IDE的速率:33MB/s在PIIX4芯片的IDE系统内,配有两个各次独立的IDE信号通道。3. 具有兼容性的模块—DMA、定时器/计数器、中断控制器等(1)在PIIX4内的两各82C37 DMA控制器经逻辑的组合,产生7个独立的可编程通道。通道[0:3]是通过与8个二进位的硬件连线实现的。通过以字节为单位的计数进行传送。而通道[5:7]是通过16个二进位的连线实现的,以字为单位的计数进行传送。(2)DMA控制器还能通过PCI总线,处理旧的DMA的两个不同的方法提供支持。(3)计数/定时器模块在功能上与82C54等价。(4)中断控制器与ISA兼容,其功能是两个82C59的功能之和。
上传时间: 2013-11-19
上传用户:3到15
The C500 microcontroller family usually provides only one on-chip synchronous serialchannel (SSC). If a second SSC is required, an emulation of the missing interface mayhelp to avoid an external hardware solution with additional electronic components.The solution presented in this paper and in the attached source files emulates the mostimportant SSC functions by using optimized SW routines with a performance up to 25KBaud in Slave Mode with half duplex transmission and an overhead less than 60% atSAB C513 with 12 MHz. Due to the implementation in C this performance is not the limitof the chip. A pure implementation in assembler will result in a strong reduction of theCPU load and therefore increase the maximum speed of the interface. In addition,microcontrollers like the SAB C505 will speed up the interface by a factor of two becauseof an optimized Architecture compared with the SAB C513.Moreover, this solution lays stress on using as few on-chip hardware resources aspossible. A more excessive consumption of those resources will result in a highermaximum speed of the emulated interface.Due to the restricted performance of an 8 bit microcontroller a pin compatible solution isprovided only; the internal register based programming interface is replaced by a set ofsubroutine calls.The attached source files also contain a test shell, which demonstrates how to exchangeinformation between an on-chip HW-SSC and the emulated SW-SSC via 5 external wiresin different operation modes. It is based on the SAB C513 (Siemens 8 bit microcontroller).A table with load measurements is presented to give an indication for the fraction of CPUperformance required by software for emulating the SSC.
标签: synchronous Emulating serial
上传时间: 2014-01-31
上传用户:z1191176801