近年来,大容量数据存储设备主要是机械硬盘,机械硬盘采用机械马达和磁片作为载体,存在抗震性能低、高功耗和速度提升难度大等缺点。固态硬盘是以半导体作为存储介质及控制载体,无机械装置,具有抗震、宽温、无噪、可靠和节能等特点,是目前存储领域所存在问题的解决方案之一。本文针对这一问题,设计基于FPGA的固态硬盘控制器,实现数据的固态存储。 文章首先介绍硬盘技术的发展,分析固态硬盘的技术现状和发展趋势,阐述课题研究意义,并概述了本文研究的主要内容及所做的工作。然后从分析固态硬盘控制器的关键技术入手,研究了SATA接口协议和NANDFLASH芯片特性。整体设计采用SOPC架构,所有功能由单片FPGA完成。移植MicroBlaze嵌入式处理器软核作为主控制器,利用Verilog HDL语言描述IP核形式设计SATA控制器核和NAND FLASH控制器核。SATA控制器核作为高速串行传输接口,实现SATA1.0协议,根据协议划分四层模型,通过状态机和逻辑电路实现协议功能。NAND FLASH控制器核管理NANDFLASH芯片阵列,将NAND FLASH接口转换成通用的SRAM接口,提高访问效率。控制器完成NAND FLASH存储管理和纠错算法,实现数据的存储和读取。最后完成固态硬盘控制器的模块测试和整体测试,介绍了测试方法、测试工具和测试流程,给出测试数据和结果分析,得出了验证结论。 本文设计的固态硬盘控制器,具有结构简单和稳定性高的特点,易于升级和二次开发,是实现固态硬盘和固态存储系统的关键技术。
上传时间: 2013-05-28
上传用户:sssnaxie
随着半导体制造技术不断的进步,SOC(System On a Chip)是未来IC产业技术研究关注的重点。由于SOC设计的日趋复杂化,芯片的面积增大,芯片功能复杂程度增大,其设计验证工作也愈加繁琐。复杂ASIC设计功能验证已经成为整个设计中最大的瓶颈。 使用FPGA系统对ASIC设计进行功能验证,就是利用FPGA器件实现用户待验证的IC设计。利用测试向量或通过真实目标系统产生激励,验证和测试芯片的逻辑功能。通过使用FPGA系统,可在ASIC设计的早期,验证芯片设计功能,支持硬件、软件及整个系统的并行开发,并能检查硬件和软件兼容性,同时还可在目标系统中同时测试系统中运行的实际软件。FPGA仿真的突出优点是速度快,能够实时仿真用户设计所需的对各种输入激励。由于一些SOC验证需要处理大量实时数据,而FPGA作为硬件系统,突出优点是速度快,实时性好。可以将SOC软件调试系统的开发和ASIC的开发同时进行。 此设计以ALTERA公司的FPGA为主体来构建验证系统硬件平台,在FPGA中通过加入嵌入式软核处理器NIOS II和定制的JTAG(Joint Test ActionGroup)逻辑来构建与PC的调试验证数据链路,并采用定制的JTAG逻辑产生测试向量,通过JTAG控制SOC目标系统,达到对SOC内部和其他IP(IntellectualProperty)的在线测试与验证。同时,该验证平台还可以支持SOC目标系统后续软件的开发和调试。 本文介绍了芯片验证系统,包括系统的性能、组成、功能以及系统的工作原理;搭建了基于JTAG和FPGA的嵌入式SOC验证系统的硬件平台,提出了验证系统的总体设计方案,重点对验证系统的数据链路的实现进行了阐述;详细研究了嵌入式软核处理器NIOS II系统,并将定制的JTAG逻辑与处理器NIOS II相结合,构建出调试与验证数据链路;根据芯片验证的要求,设计出软核处理器NIOS II系统与PC建立数据链路的软件系统,并完成芯片在线测试与验证。 本课题的整体任务主要是利用FPGA和定制的JTAG扫描链技术,完成对国产某型DSP芯片的验证与测试,研究如何构建一种通用的SOC芯片验证平台,解决SOC验证系统的可重用性和验证数据发送、传输、采集的实时性、准确性、可测性问题。本文在SOC验证系统在芯片验证与测试应用研究领域,有较高的理论和实践研究价值。
上传时间: 2013-05-25
上传用户:ccsp11
LED显示屏是LED点阵模块或者像素单元组成的平面显示屏幕。自从诞生以来,以其亮度高、视角广、寿命长、性价比高的特点,在交通、广告、新闻发布、体育比赛、电子景观等领域得到了广泛应用。 LED显示屏控制器作为控制LED屏显示图像、数据的关键,是整个LED视频显示系统的核心。本文研究的是对全彩色同步LED屏的控制,控制LED屏同步显示在上位机显示系统中某固定位置处的图像。根据已有的LED显示屏及其驱动器的特点,提出了一种可行的方案并进行了设计。系统主要分为两个部分:视频信号的获取,视频信号的处理。 经过分析比较,决定从显卡的DVI接口获得视频源,视频源经过DVI解码芯片TFP401A的解码后,可以获得图像的数字信息,这些信息包括红、绿、蓝三基色的数据以及行同步、场同步、使能等控制信号。这些信号将在视频信号处理模块中被使用。 信号处理模块在接收视频信号源后,对数据进行处理,最后输出数据给驱动电路。在信号处理模块中,采用了可编程逻辑器件FPGA来完成。可编程逻辑器件具有高集成度、高速度、高可靠性、在线可编程(ISP)等特点,所以特别适合于本设计。利用FPGA的可编程性,在FPGA内部划分了各个小模块,各小模块中通过少量的信号进行联系,这样就将比较大的系统转化成许多小的系统,使得设计更加简单,容易验证。本文分析了驱动电路所需要的数据的特点,全彩色灰度级的实现方式,决定把系统划分为视频源截取、RGB格式转化、位平面分离、读SRAM地址发生器、写SRAM地址发生器、读写SRAM选择控制器、灰度实现等模块。 最后利用示波器和SignalTap II逻辑分析仪等工具,对系统进行了联合调试。改进了时序、优化了布局布线,使得系统性能得到了良好的改善。 在分析了所需要的资源的基础上,课题决定采用Altera的Cyclone EP1C12 FPGA设计视频信号处理模块,在Quartus II和modelsim平台下,用Verilog HDL语言开发。
上传时间: 2013-05-19
上传用户:玉箫飞燕
对弓网故障的检测是当今列车检测的一项重要任务。原始故障视频图像具有极大的数据量,使实时存储和传输故障视频图像极其困难。由于视频的数据量相当大,需要采用先进的视频编解码协议进行处理,进而实现检测现场的实时监控。 @@ H.264/AVC(Advanced Video Coding)作为MPEG-4的第10部分,因其具有超高的压缩效率、极好的网络亲和性,而被广泛研究与应用。H.264/AVC采用了先进的算法,主要有整数变换、1/4像素精度插值、多模式帧间预测、抗块效应滤波器和熵编码等。 @@ 本文使用硬件描述语言Verilog,以红色飓风 II开发板作为硬件平台,在开发工具QUARTUSII 6.0和MODELSIM_SE 6.1B环境中完成软核的设计与仿真验证。以Altera公司的CycloneII FPGA(Field Programmable Gate Array)EP2C35F484C8作为核心芯片,实现视频图像采集、存储、显示以及实现H.264/AVC部分算法的基本系统。 @@ FPGA以其设计灵活、高速、具有丰富的布线资源等特性,逐渐成为许多系统设计的首选,尤其是与Verilog和VHDL等语言的结合,大大变革了电子系统的设计方法,加速了系统的设计进程。 @@ 本文首先分析了FPGA的特点、设计流程、verilog语言等,然后对静态图像及视频图像的编解码进行详细的分析,比如H.264/AVC中的变换、量化、熵编码等:并以JM10.2为平台,运用H.264/AVC算法对视频序列进行大量的实验,对不同分辨率、量化步长、视频序列进行编解码以及对结果进行分析。接着以红色飓风II开发板为平台,进行视频图像的采集存储、显示分析,其中详细分析了SAA7113的配置、CCD信号的A/D转换、I2C总线、视频的数字化ITU-R BT.601标准介绍及视频同步信号的获取、基于SDRAM的视频帧存储、VGA显示控制设计;最后运用verilog语言实现H.264/AVC部分算法,并进行功能仿真,得到预计的效果。 @@ 本文实现了整个视频信号的采集存储、显示流程,详细研究了H.264/AVC算法,并运用硬件语言实现了部分算法,对视频编解码芯片的设计具有一定的参考价值。 @@关键词:FPGA;H.264/AVC;视频;verilog;编解码
上传时间: 2013-04-24
上传用户:啦啦啦啦啦啦啦
随着社会的发展,人们对电力需求特别是电能质量的要求越来越高。但由于非线性负荷大量使用,却带来了严重的电力谐波污染,给电力系统安全、稳定、高效运行带来严重影响,给供用电设备造成危害。如何最大限度的减少谐波造成的危害,是目前电力系统领域极为关注的问题。谐波检测是谐波研究中重要分支,是解决其它相关谐波问题的基础。因此,对谐波的检测和研究,具有重要的理论意义和实用价值。 目前使用的电力系统谐波检测装置,大多基于微处理器设计。微处理器是作为整个系统的核心,它的性能高低直接决定了产品性能的好坏。而这种微处理器为主体构成的应用系统,存在效率低、资源利用率低、程序指针易受干扰等缺点。由于微电子技术的发展,特别是专用集成电路ASIC(ApplicationSpecificIntegratedCircuit)设计技术的发展,使得设计电力系统谐波检测专用的集成电路成为可能,同时为谐波检测装置的硬件设计提供了一个新的发展途径。本文目标就是设计电力系统谐波检测专用集成电路,从而可以实现对电力系统谐波的高精度检测。采用专用集成电路进行谐波检测装置的硬件设计,具有体积小,速度快,可靠性高等优点,由于应用范围广,需求量大,电力系统谐波检测专用集成电路具有很好的应用前景。 本文首先介绍了国内外现行谐波检测标准,调研了电力系统谐波检测的发展趋势;随后根据装置的功能需求,特别是依据其中谐波检测国标参数的测量算法,为系统选定了基于FPGA的SOPC设计方案。 本文分析了电力系统谐波检测专用集成电路的功能模型,对专用集成电路进行了模块划分。定义了各模块的功能,并研究了模块间的连接方式,给出了谐波检测专用集成电路的并行结构。设计了基于FPGA的谐波检测专用集成电路设计和验证的硬件平台。配合专用集成电路的电子设计自动化(EDA)工具构建了智能监控单元专用集成电路的开发环境。 在进行FPGA具体设计时,根据待实现功能的不同特点,分为用户逻辑区域和Nios处理器模块两个部分。用户逻辑区域控制A/D转换器进行模拟信号的采样,并对采样得到的数字量进行谐波分析等运算。然后将结果存入片内的双口RAM中,等待Nios处理器的访问。Nios处理器对数据处理模块的结果进一步处理,得到其各自对应的最终值,并将结果通过串行通信接口发送给上位机。 最后,对设计实体进行了整体的编译、综合与优化工作,并通过逻辑分析仪对设计进行了验证。在实验室条件下,对监测指标的运算结果进行了实验测量,实验结果表明该监测装置满足了电力系统谐波检测的总体要求。
上传时间: 2013-04-24
上传用户:yw14205
国家863项目“飞行控制计算机系统FC通信卡研制”的任务是研究设计符合CPCI总线标准的FC通信卡。本课题是这个项目的进一步引伸,用于设计SCI串行通信接口,以实现环上多计算机系统间的高速串行通信。 本文以此项目为背景,对基于FPGA的SCI串行通信接口进行研究与实现。论文先概述SCI协议,接着对SCI串行通信接口的两个模块:SCI节点模型模块和CPCI总线接口模块的功能和实现进行了详细的论述。 SCI节模型包含Aurora收发模块、中断进程、旁路FIFO、接受和发送存储器、地址解码、MUX。在SCI节点模型的实现上,利用FPGA内嵌的RocketIO高速串行收发器实现主机之间的高速串行通信,并利用Aurora IP核实现了Aurora链路层协议;设计一个同步FIFO实现旁路FIFO;利用FPGA上的块RAM实现发送和接收存储器;中断进程、地址解码和多路复合分别在控制逻辑中实现。 CPCI总线接口包括PCI核、PCI核的配置模块以及用户逻辑三个部分。本课题中,采用FPGA+PCI软核的方法来实现CPCI总线接口。PCI核作为PCI总线与用户逻辑之间的桥梁:PCI核的配置模块负责对PCI核进行配置,得到用户需要的PCI核;用户逻辑模块负责实现整个通信接口具体的内部逻辑功能;并引入中断机制来提高SCI通信接口与主机之间数据交换的速率。 设计选用硬件描述语言VerilogHDL和VHDL,在开发工具Xilinx ISE7.1中完成整个系统的设计、综合、布局布线,利用Modelsim进行功能及时序仿真,使用DriverWorks为SCI串行通信接口编写WinXP下的驱动程序,用VC++6.0编写相应的测试应用程序。最后,将FPGA设计下载到FC通信卡中运行,并利用ISE内嵌的ChipScope Pro虚拟逻辑分析仪对设计进行验证,运行结果正常。 文章最后分析传输性能上的原因,指出工作中的不足之处和需要进一步完善的地方。
上传时间: 2013-04-24
上传用户:竺羽翎2222
信息安全在当今的社会生产生活中已经被广为关注,对敏感信息进行加密是提高信息安全性的一种常见的和有效的手段。 常见的加密方法有软件加密和硬件加密。软件加密的方法因为加密速度低、安全性差以及安装不便,在一些高端或主流的加密处理中都采用硬件加密手段对数据进行处理。硬件加密设备如加密狗和加密卡已经广泛地应用于信息加密领域当中。 但是加密卡和加密狗因为采用的是多芯片结构,即采用独立的USB通信芯片和独立的加密芯片来分别实现数据的USB传输和加密功能,如果在USB芯片和加密芯片之间进行数据窃听的话,很轻易地就可以获得未加密的明文数据。作者提出了一种新的基于单芯片实现的USB加密接口芯片的构想,采用一块芯片实现数据的USB2.0通信和AES加密功能,命名为USB2.0加密接口芯片。 USB2.0加密接口芯片采用了USB2.0接口标准和AES加密算法。该加密芯片可以实现与主机的快速通信,具有快速的密码处理能力,对外提供USB接口,支持基于USB密码载体的自身安全初始化方式。 根据设计思想,课题研究并设计了USB2.0加密接口芯片的总体硬件架构,设计了USB模块和AES加密模块。为了解决USB通信模块与AES加密模块之间存在的数据处理单元匹配以及速度匹配问题,本文设计了AESUSB缓冲器,优化了AES有限域加密算法。最后,利用VerilogHDL语言在FPGA芯片上实现了USB2.0加密接口芯片的功能,并在此基础之上对加密芯片的通信和加密性能进行了测试和验证。
上传时间: 2013-05-24
上传用户:黄华强
“计算机组成原理”是计算机专业的一门核心课程。传统的计算机组成原理实验是在指令格式、寻址方式、运算器、控制器、存储器等都相对固定的情况下进行,学生主要进行功能实现和验证,缺少自主设计和创新过程。 为改变这种状况,须更新现有的计算机组成原理实验系统。采用FPGA芯片作为载体,使用EDA开发工具,用硬件描述语言实现不同的硬件逻辑,再与硬件的输入输出接口线路相连,最终组成一台可用于组成实验教学的完整计算机系统。这期间学生将掌握组成原理实验系统的各个部件的功能及其相互之间如何协作。本实验系统能够让学生完成有关计算机组成原理的部件实验和整机实验:部件实验包括加法器、乘法器、除法器、算术逻辑运算单元、控制器、存储器等;整机实验可以独立实现各部件的功能描述。该系统能够帮助学生巩固课堂知识并增强设计能力。 为实现上述目的,依据EDA技术的开发流程和方法,建立了一个完整的体系,其中包括控制模块、内存模块、运算器模块、通用寄存器组及其控制部件、程序计数器、地址寄存器、指令寄存器、时序部件、数据控制部件、状态值控制部件,以及为帮学生调试而专门设计的输出观察部件。在Quartus Ⅱ开发环境下,使用Altera公司FPGA芯片,采用VHDL,语言设计并实现了上述模块。经过仿真测试,所实现的各功能模块作为独立部件时能完成各自功能:而将这些部件组合起来的整机系统,可以执行程序段和进行各种运算处理,达到了设计要求。
上传时间: 2013-06-01
上传用户:hebmuljb
当前,片上系统(SOC)已成为系统实现的主流技术。流片风险与费用增加、上市时间压力加大、产品功能愈加复杂等因素使得SOC产业逐渐划分为IP提供者、SOC设计服务者和芯片集成者三个层次。SOC设计已走向基于IP集成的平台设计阶段,经过严格验证质量可靠的IP核成为SOC产业中的重要一环。 GPIB控制器芯片是组建自动测试系统的核心,在测试领域应用广泛。本人通过查阅大量的技术资料,分析了集成电路在国内外发展的最新动态,提出了基于FPGA的自主知识产权的GPIB控制器IP核的设计和实现。 本文首先讨论了基于FPGA的GPIB控制器的背景意义,接着对FPGA开发所具备的基本知识作了简要介绍。文中对GPIB总线进行了简单的描述,根据芯片设计的主要思想,重点在于论述怎样用FPGA来实现IEEE-488.2协议,并详细阐述了GPIB控制器的十种接口功能及其状态机的IP核实现。同时,对数据通路也进行了较为细致的说明。在设计的时候采用基于模块化设计思想,用VerilogHDL语言完成各模块功能描述,通过Synplifv软件的综合,用Modelsim对设计进行了前、后仿真。最后利用生成的模块符号采取类似画电路图的方法完成整个系统芯片的lP软核设计,并用EDA工具下载到了FPGA上。 为了更好地验证设计思想,借助EDA工具对GPIB控制器的工作状态进行了软件仿真,给出仿真结果,仿真波形验证了GPIB控制器的工作符合预想。最后,本文对基于FPGA的GPIB控制器的IP核设计过程进行了总结,展望了当前GPIB控制器设计的发展趋势,指出了开展进一步研究需要做的工作。
上传时间: 2013-06-12
上传用户:mqien
卫星导航定位系统可以为公路、铁路、空中和海上的交通运输工具提供导航定位服务。它能够军民两用,战略作用与商业利益并举。只要持有便携式接收机,则无论身处陆地、海上还是空中,都能收到卫星发出的特定信号。接收机选取至少四颗卫星发出的信号进行分析,就能确定接收机持有者的位置。 GPS导航定位接收机的理论基础即是扩频通信理论,扩频通信技术与常规的通信技术相比,具有低截获率,强抗噪声,抗干扰性,具有信息隐蔽和多址通信等特点,目前己从军事领域向民用领域迅速发展,成为进入信息时代的高新技术通信传输方式之一。扩频通信技术中,最常见的是直接序列扩频通信(DSSS)系统,本文所研究的就是这一类系统。 目前在卫星信号的捕获上一般使用两种方法:顺序捕获方法(时域法,基于大规模并行相关器)和并行捕获方法(频域法,基于FFT)。本文在第二章分别分析了现有顺序捕获和并行捕获技术的原理,并给出了它们的优缺点。 本文第三章对长码的直接捕获进行了深入的研究,基于对国内外相关文献中长码直捕方法的分析与对比,并且结合在实际过程中硬件资源需求的考虑,应用了基于分段补零循环相关和FFT搜索频偏的直捕方法。此方法大大减少了计算量,加快了信号捕获的速度。本方法利用FFT实现接收信号与本地长码的并行相关,同时完成频偏的搜索,将传统的二维搜索转换为并行的一维搜索,从而能快速实现长码捕获。 GPS信号十分微弱,灵敏度低,在战场环境下,GPS接收机会面临各种人为的干扰。如何从复杂的干扰信号中实现对GPS信号的捕获,即抗干扰技术的研究,是GPS也是本文研究一个的方面。第四章即研究了GPS接收机干扰抑制算法,在强干扰环境下,需要借助信号处理技术在不增加信号带宽的条件下提高系统的抗干扰能力,以保证后续捕获跟踪模块有充足的处理增益。 本文在第五章给出了GPS接收机长码捕获以及干扰抑制的FPGA实现方案,并对各主要子模块进行了详细地分析。基本型接收机中长码捕获采用频域方法,选用Altera StratixⅡ EP2S180芯片实现;抗干扰型接收机中选用Xilinx xc4vlx100芯片。实现了各模块的单独测试和整个系统的联调,通过联调验证,本文提出的长码直接捕获方法正确、可行。 本文提出的长码直捕方法可以在不需要C/A码辅助捕获下完成对长码的直接捕获,可以应用于GPS接收机,监测站接收机的同步等,对我国自主研发导航定位接收机也有重大的现实及经济意义。
上传时间: 2013-06-18
上传用户:wang5829