首先说这是经验积累的问题,其次就是需要个人电路知识经验了! 布局说白了就是在板子上放器件。这时如果前面讲到的准备工作都做好的话,就可以在原理图上生成网络表(Design-> Create Netlist),之后在PCB图上导入网络表(Design->Load Nets)。就看见器件哗啦啦的全堆上去了,各管脚之间还有飞线提示连接。然后就可以对器件布局了。一般布局按如下原则进行:
上传时间: 2013-10-10
上传用户:皇族传媒
很多使用CAD的朋友因为找不到自己需要的字体而烦恼,网上各种可供下载的CAD字库也不少。之前我也将我收集的600多种字体上传到百度网盘了,最近又下载了一个1000多种字体的字体库。 不过发现一个问题:字体名可以随便改,同一字体也可能有好多不同的版本。从下载的字体库中就可以看到txt1\2\3\....等多种字体,这些字体到底有什么区别。hztxt.shx是国内使用很广泛的一种字体文件,但这个文件我就见过多个版本,每个版本文件大小不同,字符显示效果也不完全相同。因此要找到自己需要的字体说容易,也不容易,最保险的方法就是找到绘图者使用的原始字体,到网上下载各种字库都不是很保险。 不过我用过一个SHX字体查看工具,可以直接看到字体文件中的字符,给大家共享一下,但愿能给大家一些帮助。 利用SHX查看器,点“打开”按钮,可以直接打开SHX文件,看到字体文件中包含的字符及字体效果,如下图所示: 使用这个工具有下面三个用处: 1、在找到一个字体后,可以先用这个工具检查一下,是否是自己所需要的字体,不要找到字体就盲目地复制到CAD的字体目录下。 2、分别打开txt.shx、hztxt.shx、ltypeshp.shx这几个形文件,可以了解一下字体、大字体和符号形文件里到底里面放了写什么东西。 3、如果你想更深入了解字体,你可以将SHX在保存为字体源文件*.shp,这是一个纯文本文件,你可以了解形文件的定义形式,如果你有兴趣的话,甚至可以根据一些教程的指导自己来定义或修改字体文件。 cad字体查看工具SHX查看器注册码 Name: (Anything) s/n: sv89356241 Code: LLJL6Y2L
上传时间: 2015-01-01
上传用户:Togetherheronce
基于高速FPGA 的PCB 设计技巧 如果高速PCB 设计能够像连接原理图节点那样简单,以及像在计算机显示器上所看到的那样优美的话,那将是一件多么美好的事情。然而,除非设计师初入PCB 设计,或者是极度的幸运,实际的PCB 设计通常不像他们所从事的电路设计那样轻松。在设计最终能够正常工作、有人对性能作出肯定之前,PCB设计师都面临着许多新的挑战。这正是目前高速PCB设计的现状–设计规则和设计指南不断发展,如果幸运的话,它们会形成一个成功的解决方案。
上传时间: 2013-11-08
上传用户:ly1994
PCB布线设计-模拟和数字布线的异同工程领域中的数字设计人员和数字电路板设计专家在不断增加,这反映了行业的发展趋势。尽管对数字设计的重视带来了电子产品的重大发展,但仍然存在,而且还会一直存在一部分与 模拟 或现实环境接口的电路设计。模拟和数字领域的布线策略有一些类似之处,但要获得更好的工程领域中的数字设计人员和数字电路板设计专家在不断增加,这反映了行业的发展趋势。尽管对数字设计的重视带来了电子产品的重大发展,但仍然存在,而且还会一直存在一部分与模拟或现实环境接口的电路设计。模拟和数字领域的布线策略有一些类似之处,但要获得更好的结果时,由于其布线策略不同,简单电路布线设计就不再是最优方案了。本文就旁路电容、电源、地线设计、电压误差和由PCB布线引起的电磁干扰(EMI)等几个方面,讨论模拟和数字布线的基本相似之处及差别。模拟和数字布线策略的相似之处旁路或去耦电容在布线时,模拟器件和数字器件都需要这些类型的电容,都需要靠近其电源引脚连接一个电容,此电容值通常为0.1mF。系统供电电源侧需要另一类电容,通常此电容值大约为10mF。这些电容的位置如图1所示。电容取值范围为推荐值的1/10至10倍之间。但引脚须较短,且要尽量靠近器件(对于0.1mF电容)或供电电源(对于10mF电容)。在电路板上加旁路或去耦电容,以及这些电容在板上的位置,对于数字和模拟设计来说都属于常识。但有趣的是,其原因却有所不同。在模拟布线设计中,旁路电容通常用于旁路电源上的高频信号,如果不加旁路电容,这些高频信号可能通过电源引脚进入敏感的模拟芯片。一般来说,这些高频信号的频率超出模拟器件抑制高频信号的能力。如果在模拟电路中不使用旁路电容的话,就可能在信号路径上引入噪声,更严重的情况甚至会引起振动。
上传时间: 2013-11-05
上传用户:604759954
数字与模拟电路设计技巧IC与LSI的功能大幅提升使得高压电路与电力电路除外,几乎所有的电路都是由半导体组件所构成,虽然半导体组件高速、高频化时会有EMI的困扰,不过为了充分发挥半导体组件应有的性能,电路板设计与封装技术仍具有决定性的影响。 模拟与数字技术的融合由于IC与LSI半导体本身的高速化,同时为了使机器达到正常动作的目的,因此技术上的跨越竞争越来越激烈。虽然构成系统的电路未必有clock设计,但是毫无疑问的是系统的可靠度是建立在电子组件的选用、封装技术、电路设计与成本,以及如何防止噪讯的产生与噪讯外漏等综合考虑。机器小型化、高速化、多功能化使得低频/高频、大功率信号/小功率信号、高输出阻抗/低输出阻抗、大电流/小电流、模拟/数字电路,经常出现在同一个高封装密度电路板,设计者身处如此的环境必需面对前所未有的设计思维挑战,例如高稳定性电路与吵杂(noisy)性电路为邻时,如果未将噪讯入侵高稳定性电路的对策视为设计重点,事后反复的设计变更往往成为无解的梦魇。模拟电路与高速数字电路混合设计也是如此,假设微小模拟信号增幅后再将full scale 5V的模拟信号,利用10bit A/D转换器转换成数字信号,由于分割幅宽祇有4.9mV,因此要正确读取该电压level并非易事,结果造成10bit以上的A/D转换器面临无法顺利运作的窘境。另一典型实例是使用示波器量测某数字电路基板两点相隔10cm的ground电位,理论上ground电位应该是零,然而实际上却可观测到4.9mV数倍甚至数十倍的脉冲噪讯(pulse noise),如果该电位差是由模拟与数字混合电路的grand所造成的话,要测得4.9 mV的信号根本是不可能的事情,也就是说为了使模拟与数字混合电路顺利动作,必需在封装与电路设计有相对的对策,尤其是数字电路switching时,ground vance noise不会入侵analogue ground的防护对策,同时还需充分检讨各电路产生的电流回路(route)与电流大小,依此结果排除各种可能的干扰因素。以上介绍的实例都是设计模拟与数字混合电路时经常遇到的瓶颈,如果是设计12bit以上A/D转换器时,它的困难度会更加复杂。
上传时间: 2014-02-12
上传用户:wenyuoo
混合加密程序,RSA算法加密DES密钥,DES算法加密消息.很多通讯系统都是这样加密的
上传时间: 2014-01-07
上传用户:a673761058
运行以后把电脑里拨号密码都偷出来
上传时间: 2014-01-02
上传用户:671145514
都是经典
标签:
上传时间: 2013-12-23
上传用户:极客
都是C语言常用的算法
上传时间: 2015-01-06
上传用户:黄华强
网吧的所有经营活动都能操作(包括时间管理、客户机管理、食品出售等),方便易用
上传时间: 2015-01-08
上传用户:fnhhs