虫虫首页|资源下载|资源专辑|精品软件
登录|注册

连续的

  • 汇编+保护模式+教程

    九.输入/输出保护为了支持多任务,80386不仅要有效地实现任务隔离,而且还要有效地控制各任务的输入/输出,避免输入/输出冲突。本文将介绍输入输出保护。 这里下载本文源代码。 <一>输入/输出保护80386采用I/O特权级IPOL和I/O许可位图的方法来控制输入/输出,实现输入/输出保护。 1.I/O敏感指令输入输出特权级(I/O Privilege Level)规定了可以执行所有与I/O相关的指令和访问I/O空间中所有地址的最外层特权级。IOPL的值在如下图所示的标志寄存器中。 标  志寄存器 BIT31—BIT18 BIT17 BIT16 BIT15 BIT14 BIT13—BIT12 BIT11 BIT10 BIT9 BIT8 BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0 00000000000000 VM RF 0 NT IOPL OF DF IF TF SF ZF 0 AF 0 PF 1 CF I/O许可位图规定了I/O空间中的哪些地址可以由在任何特权级执行的程序所访问。I/O许可位图在任务状态段TSS中。 I/O敏感指令 指令 功能 保护方式下的执行条件 CLI 清除EFLAGS中的IF位 CPL<=IOPL STI 设置EFLAGS中的IF位 CPL<=IOPL IN 从I/O地址读出数据 CPL<=IOPL或I/O位图许可 INS 从I/O地址读出字符串 CPL<=IOPL或I/O位图许可 OUT 向I/O地址写数据 CPL<=IOPL或I/O位图许可 OUTS 向I/O地址写字符串 CPL<=IOPL或I/O位图许可 上表所列指令称为I/O敏感指令,由于这些指令与I/O有关,并且只有在满足所列条件时才可以执行,所以把它们称为I/O敏感指令。从表中可见,当前特权级不在I/O特权级外层时,可以正常执行所列的全部I/O敏感指令;当特权级在I/O特权级外层时,执行CLI和STI指令将引起通用保护异常,而其它四条指令是否能够被执行要根据访问的I/O地址及I/O许可位图情况而定(在下面论述),如果条件不满足而执行,那么将引起出错码为0的通用保护异常。 由于每个任务使用各自的EFLAGS值和拥有自己的TSS,所以每个任务可以有不同的IOPL,并且可以定义不同的I/O许可位图。注意,这些I/O敏感指令在实模式下总是可执行的。 2.I/O许可位图如果只用IOPL限制I/O指令的执行是很不方便的,不能满足实际要求需要。因为这样做会使得在特权级3执行的应用程序要么可访问所有I/O地址,要么不可访问所有I/O地址。实际需要与此刚好相反,只允许任务甲的应用程序访问部分I/O地址,只允许任务乙的应用程序访问另一部分I/O地址,以避免任务甲和任务乙在访问I/O地址时发生冲突,从而避免任务甲和任务乙使用使用独享设备时发生冲突。 因此,在IOPL的基础上又采用了I/O许可位图。I/O许可位图由二进制位串组成。位串中的每一位依次对应一个I/O地址,位串的第0位对应I/O地址0,位串的第n位对应I/O地址n。如果位串中的第位为0,那么对应的I/O地址m可以由在任何特权级执行的程序访问;否则对应的I/O地址m只能由在IOPL特权级或更内层特权级执行的程序访问。如果在I/O外层特权级执行的程序访问位串中位值为1的位所对应的I/O地址,那么将引起通用保护异常。 I/O地址空间按字节进行编址。一条I/O指令最多可涉及四个I/O地址。在需要根据I/O位图决定是否可访问I/O地址的情况下,当一条I/O指令涉及多个I/O地址时,只有这多个I/O地址所对应的I/O许可位图中的位都为0时,该I/O指令才能被正常执行,如果对应位中任一位为1,就会引起通用保护异常。 80386支持的I/O地址空间大小是64K,所以构成I/O许可位图的二进制位串最大长度是64K个位,即位图的有效部分最大为8K字节。一个任务实际需要使用的I/O许可位图大小通常要远小于这个数目。 当前任务使用的I/O许可位图存储在当前任务TSS中低端的64K字节内。I/O许可位图总以字节为单位存储,所以位串所含的位数总被认为是8的倍数。从前文中所述的TSS格式可见,TSS内偏移66H的字确定I/O许可位图的开始偏移。由于I/O许可位图最长可达8K字节,所以开始偏移应小于56K,但必须大于等于104,因为TSS中前104字节为TSS的固定格式,用于保存任务的状态。 1.I/O访问许可检查细节保护模式下处理器在执行I/O指令时进行许可检查的细节如下所示。 (1)若CPL<=IOPL,则直接转步骤(8);(2)取得I/O位图开始偏移;(3)计算I/O地址对应位所在字节在I/O许可位图内的偏移;(4)计算位偏移以形成屏蔽码值,即计算I/O地址对应位在字节中的第几位;(5)把字节偏移加上位图开始偏移,再加1,所得值与TSS界限比较,若越界,则产生出错码为0的通用保护故障;(6)若不越界,则从位图中读对应字节及下一个字节;(7)把读出的两个字节与屏蔽码进行与运算,若结果不为0表示检查未通过,则产生出错码为0的通用保护故障;(8)进行I/O访问。设某一任务的TSS段如下: TSSSEG                  SEGMENT PARA USE16                        TSS     <>             ;TSS低端固定格式部分                        DB      8 DUP(0)       ;对应I/O端口00H—3FH                        DB      10000000B      ;对应I/O端口40H—47H                        DB      01100000B      ;对用I/O端口48H—4FH                        DB      8182 DUP(0ffH) ;对应I/O端口50H—0FFFFH                        DB      0FFH           ;位图结束字节TSSLen                  =       $TSSSEG                  ENDS 再假设IOPL=1,CPL=3。那么如下I/O指令有些能正常执行,有些会引起通用保护异常:                         in      al,21h  ;(1)正常执行                        in      al,47h  ;(2)引起异常                        out     20h,al  ;(3)正常实行                        out     4eh,al  ;(4)引起异常                        in      al,20h  ;(5)正常执行                        out     20h,eax ;(6)正常执行                        out     4ch,ax  ;(7)引起异常                        in      ax,46h  ;(8)引起异常                        in      eax,42h ;(9)正常执行 由上述I/O许可检查的细节可见,不论是否必要,当进行许可位检查时,80386总是从I/O许可位图中读取两个字节。目的是为了尽快地执行I/O许可检查。一方面,常常要读取I/O许可位图的两个字节。例如,上面的第(8)条指令要对I/O位图中的两个位进行检查,其低位是某个字节的最高位,高位是下一个字节的最低位。可见即使只要检查两个位,也可能需要读取两个字节。另一方面,最多检查四个连续的位,即最多也只需读取两个字节。所以每次要读取两个字节。这也是在判别是否越界时再加1的原因。为此,为了避免在读取I/O许可位图的最高字节时产生越界,必须在I/O许可位图的最后填加一个全1的字节,即0FFH。此全1的字节应填加在最后一个位图字节之后,TSS界限范围之前,即让填加的全1字节在TSS界限之内。 I/O许可位图开始偏移加8K所得的值与TSS界限值二者中较小的值决定I/O许可位图的末端。当TSS的界限大于I/O许可位图开始偏移加8K时,I/O许可位图的有效部分就有8K字节,I/O许可检查全部根据全部根据该位图进行。当TSS的界限不大于I/O许可位图开始偏移加8K时,I/O许可位图有效部分就不到8K字节,于是对较小I/O地址访问的许可检查根据位图进行,而对较大I/O地址访问的许可检查总被认为不可访问而引起通用保护故障。因为这时会发生字节越界而引起通用保护异常,所以在这种情况下,可认为不足的I/O许可位图的高端部分全为1。利用这个特点,可大大节约TSS中I/O许可位图占用的存储单元,也就大大减小了TSS段的长度。 <二>重要标志保护输入输出的保护与存储在标志寄存器EFLAGS中的IOPL密切相关,显然不能允许随便地改变IOPL,否则就不能有效地实现输入输出保护。类似地,对EFLAGS中的IF位也必须加以保护,否则CLI和STI作为敏感指令对待是无意义的。此外,EFLAGS中的VM位决定着处理器是否按虚拟8086方式工作。 80386对EFLAGS中的这三个字段的处理比较特殊,只有在较高特权级执行的程序才能执行IRET、POPF、CLI和STI等指令改变它们。下表列出了不同特权级下对这三个字段的处理情况。 不同特权级对标志寄存器特殊字段的处理 特权级 VM标志字段 IOPL标志字段 IF标志字段 CPL=0 可变(初POPF指令外) 可变 可变 0  不变 不变 可变 CPL>IOPL 不变 不变 不变 从表中可见,只有在特权级0执行的程序才可以修改IOPL位及VM位;只能由相对于IOPL同级或更内层特权级执行的程序才可以修改IF位。与CLI和STI指令不同,在特权级不满足上述条件的情况下,当执行POPF指令和IRET指令时,如果试图修改这些字段中的任何一个字段,并不引起异常,但试图要修改的字段也未被修改,也不给出任何特别的信息。此外,指令POPF总不能改变VM位,而PUSHF指令所压入的标志中的VM位总为0。 <三>演示输入输出保护的实例(实例九)下面给出一个用于演示输入输出保护的实例。演示内容包括:I/O许可位图的作用、I/O敏感指令引起的异常和特权指令引起的异常;使用段间调用指令CALL通过任务门调用任务,实现任务嵌套。 1.演示步骤实例演示的内容比较丰富,具体演示步骤如下:(1)在实模式下做必要准备后,切换到保护模式;(2)进入保护模式的临时代码段后,把演示任务的TSS段描述符装入TR,并设置演示任务的堆栈;(3)进入演示代码段,演示代码段的特权级是0;(4)通过任务门调用测试任务1。测试任务1能够顺利进行;(5)通过任务门调用测试任务2。测试任务2演示由于违反I/O许可位图规定而导致通用保护异常;(6)通过任务门调用测试任务3。测试任务3演示I/O敏感指令如何引起通用保护异常;(7)通过任务门调用测试任务4。测试任务4演示特权指令如何引起通用保护异常;(8)从演示代码转临时代码,准备返回实模式;(9)返回实模式,并作结束处理。

    标签: 汇编 保护模式 教程

    上传时间: 2013-12-10

    上传用户:nunnzhy

  • 数据采集图解

    常见问题数据采集控制系统的组成?  1、变送器和执行器 2、信号调理器3、数据采集控制硬件4、计算机软件 选择数据采集卡要从那几个方面进行考虑?  1、通道的类型及个数2、差分或单端输入3、采样速度4、精度要求 名词解释单端输入方式:各路输入信号共用一个参考电位,即各路输入信号共地,这是最常用的接线方式。使用单端输入方式时,地线比较稳定,抗干扰能力较强。 双端输入方式:各路输入信号各自使用自己的参考电位,即各路输入信号不共地。如果输入信号来自不同的信号源,而这些信号源的参考电位(地线)略有差异,可考虑使用这种接线方式。 单极性信∶号输入信号相对于模拟地电位来讲,只偏向一侧,如输入电压为0~10V。双极性信号∶输入信号相对于模拟地电位来讲,可高可低,如输入电压为-5V~+5V。 A/D转换速率∶表明A/D转换芯片的工作速度。 初始地址∶使用板卡时,需要对卡上的一组寄存器进行操作,这组寄存器占用数个连续的地址,一般将其中最低的地址值定为此卡的初始地址。

    标签: 数据采集 图解

    上传时间: 2014-01-13

    上传用户:sy_jiadeyi

  • 数据结构实验报告--迷宫求解

    1.实验要求 l 实验目的: (1)进一步掌握指针、异常处理的使用; (2)掌握栈的操作的实现方法; (3)培养使用栈解决实际问题的能力 l 实验内容:利用栈实现迷宫求解问题,具体要求如下: (1)可以使用递归或非递归两种方法实现; (2)老鼠能够记住自己的路,不会反复走重复的路径; (3)可以自己任意设置起点; (4)必须要有异常处理,比如输入参数错误时应抛出异常 2. 程序分析 2.1 存储结构      该程序采用栈的顺序存储结构,利用一组地址连续的存储单元依次存放老鼠在迷宫中的每一步路径,由于栈的插入和删除只能在栈顶实现,因此,每前进一步,表示该点的数组元素入栈,栈顶指针top+1;每后退一步,表示原来点的数组元素出栈,top-1。栈的操作示意如图(a)所示: 图(a) 栈的操作示意图

    标签: 数据结构 实验报告 迷宫

    上传时间: 2013-11-07

    上传用户:jasonheung

  • 直接解压即可

    直接解压即可,为连续的分段插补程序,运用在数控机床上

    标签: 解压

    上传时间: 2015-03-13

    上传用户:aig85

  • 此程序为vc程序源代码

    此程序为vc程序源代码,而且是多项式拟合程序,具体做法是从一副图上读出离散或连续的点,拟合成直线或曲线。

    标签: 程序 源代码

    上传时间: 2015-05-04

    上传用户:c12228

  • 在三次样条中

    在三次样条中,要寻找三次多项式,以逼近每对数据点间的曲线。在样条术语中,这些数据点称之为断点。因为,两点只能决定一条直线,而在两点间的曲线可用无限多的三次多项式近似。因此,为使结果具有唯一性。在三次样条中,增加了三次多项式的约束条件。通过限定每个三次多项式的一阶和二阶导数,使其在断点处相等,就可以较好地确定所有内部三次多项式。此外,近似多项式通过这些断点的斜率和曲率是连续的。然而,第一个和最后一个三次多项式在第一个和最后一个断点以外,没有伴随多项式。因此必须通过其它方法确定其余的约束。最常用的方法,也是函数spline所采用的方法,就是采用非扭结(not-a-knot)条件。这个条件强迫第一个和第二个三次多项式的三阶导数相等。对最后一个和倒数第二个三次多项式也做同样地处理。

    标签: 三次样条

    上传时间: 2015-05-11

    上传用户:bcjtao

  • 碟机Search流程说明 Search过程中

    碟机Search流程说明 Search过程中,主要涉及到的问题是Search(搜索) 和Match(匹配),其目的就是能够准确地给光头定位。如果匹配才算是成功的?要跳转多少个Track(信迹)才能到目的位置,以及这些跳转指令又是如何?等等诸如此类的问题都将该文档中有详细的解释说明。在koala这个项目中,当 Servo不在做顺序读取,而因为某些特定目的要求需要做跳转读取,这时就需要用到Search功能,快速跳转至指定位置读取数据。比如说歌曲跳转,当播放完前一首歌时,开始播放下一首歌时,必须快速将光头移至该首歌的开始数据位置,但因为前后两首歌的数据地址可能不是连续的,这就需要根据前后两首歌的地址差值进行Search动作。

    标签: Search 流程 过程

    上传时间: 2014-12-04

    上传用户:nanfeicui

  • 离散01串问题

    离散01串问题,(n,k)01 串定义为:长度为n 的01 串,其中不含k 个连续的相同子串。对于给定的正整数n 和k,计算(n,k)01 串的个数。

    标签: 离散

    上传时间: 2015-11-14

    上传用户:sardinescn

  • 对于电话号码

    对于电话号码,整数等,判断单个值 是否落到多个不连续的数据范围内

    标签: 电话 号码

    上传时间: 2013-12-26

    上传用户:familiarsmile

  • c#中网络协议与套接字编程部分相关课件

    c#中网络协议与套接字编程部分相关课件,跟前面传的不是连续的

    标签: 网络协议 套接 分相 编程

    上传时间: 2014-01-17

    上传用户:270189020