·基于Opencv与VC环境的视频采集图像滤波与角点检测运动跟踪
上传时间: 2013-04-24
上传用户:gengxiaochao
基于 FPGA 的运动目标检测系统的研究与开发 \\r\\n希望有哪位朋友需要
上传时间: 2013-08-11
上传用户:924484786
基于图形处理器单元(GPU)提出了一种帧间差分与模板匹配相结合的运动目标检测算法。在CUDA-SIFT(基于统一计算设备架构的尺度不变特征变换)算法提取图像匹配特征点的基础上,优化随机采样一致性算法(RANSAC)剔除图像中由于目标运动部分产生的误匹配点,运用背景补偿的方法将静态背景下的帧间差分目标检测算法应用于动态情况,实现了动态背景下的运动目标检测,通过提取目标特征与后续多帧图像进行特征匹配的方法最终实现自动目标检测。实验表明该方法对运动目标较小、有噪声、有部分遮挡的图像序列具有良好的目标检测效果。
上传时间: 2013-10-09
上传用户:ifree2016
通过深入研究国内外视频图像运动目标的跟踪技术现状,基于目前对视频图像中运动物体进行检测与跟踪设备的便携性差、耗电量高等缺点,本系统利用ARM11平台搭载Linux系统实现相关应用的方法,完成了一套较完整的小型化检测系统的设计。本系统通过对实验室中走动的人进行视频检测跟踪试验,最终得出本系统可以对通过USBCAM采集的视频信号进行实时的数据处理,视频分辨率为240×320。包括检测出运动物体,标记出运动物体的图形中点,并对其进行轨迹的标注等。
上传时间: 2013-10-23
上传用户:zq70996813
提出了一种基于Surendra改进的运动目标检测算法,通过对背景更新系数的改进,获取稳定准确的背景,再将背景帧与含运动区域的图像帧用差分运算获得运动目标图像。实验结果表明,该算法能够较快反应环境的变化,准确地获得背景图像,提高运动目标检测的准确性。
上传时间: 2013-11-19
上传用户:1234567890qqq
针对帧差分法易产生空洞以及背景减法不能检测出与背景灰度接近的目标的问题,提出了一种将背景减和帧差法相结合的运动目标检测算法。首先利用连续两帧图像进行背景减法得到两种差分图像,并用最大类间与类内方差比法得到合适的阈值将这两种差分图像二值化,然后将得到的两种二值化图像进行或运算,最后利用图像形态学滤波得到准确的运动目标。实验结果表明,该算法简单、易实现、实时性强
上传时间: 2013-10-08
上传用户:yqs138168
检测运动物体需要无运动物体的背景图像,所以,首先应用多帧像素平均值法提取了运动视频序列的背景图,从背景图像中分离目标像素,获取目标的质心坐标,并应用质心跟踪法以灰色图像序列为基础,对运动的目标进行实时检测和跟踪。质心跟踪法的目标位置通过质点的中心来确定,该算法计算简单,计算量小,其稳定性与精度主要取决于序列图像的分割及其阀值的确定情况。文中给出了用Opencv实现算法的具体过程和关键代码,并且设计了跟踪运动车辆的控制界面,方便了实时监控。实验结果表明,该方法可以实现视频序列中运动目标的识别,具有实时性、并能给出较好的识别效果。
上传时间: 2013-11-12
上传用户:虫虫虫虫虫虫
针对目标和背景具有空间连续性的特点,提出一种基于核密度估计和马尔科夫随机场的运动目标检测方法。首先利用核密度估计计算像素点属于背景的概率密度,在特征向量中加入颜色空间运动矢量分量来提高对背景扰动和光照变化的鲁棒性;然后构造马尔科夫随机场,提出一种马尔科夫随机场能量函数代价项的构造方法,通过最小化其能量函数得到目标分割结果。实验结果证明,该运动目标检测算法对背景扰动和光照变化具有更好的鲁棒性,错误检测率更低。
上传时间: 2014-01-20
上传用户:solmonfu
给出了一种运动人体区域的检测及其对应的二维关键点的提取方法。首先运用帧差法构建一个自适应的背景模型以达到背景初始化和背景更新的目的。接着用减背景法实现二维运动人体区域的检测。最后将检测到的运动人体区域,通过运用APAR(anti-paralle lines)区域法实现对运动人体关键点的提取。
上传时间: 2013-10-25
上传用户:lz4v4
基于运动区域和运动区域外截矩形进行运动目标检测的程序
上传时间: 2013-12-02
上传用户:kr770906