基于Joint+HOG特征复杂场景下的头肩检测
头肩的定位检测采用了Haar特征和HOG特征的层级分类方法,并根据头肩的对称性特点,提出了一种称为Joint HOG的组合型特征。通过Haar分类器滤除大部分负样本后,接着用HOG进行精细的验证从而得到头肩目标框。实验表明,本文的方法取得了80%~90%的准确率,并且完全可以用于实时处理。 ...
头肩的定位检测采用了Haar特征和HOG特征的层级分类方法,并根据头肩的对称性特点,提出了一种称为Joint HOG的组合型特征。通过Haar分类器滤除大部分负样本后,接着用HOG进行精细的验证从而得到头肩目标框。实验表明,本文的方法取得了80%~90%的准确率,并且完全可以用于实时处理。 ...
通过对海上红外图像进行分析,提出了一种基于海天线提取的红外小目标检测方法。该算法的基本思路是根据所需提取目标的特点,首先选择感兴趣的灰度区域,然后运用Canny算子进行边缘检测,接着对图像进行Hough变换检测海天线,最后对海天线以下且符合目标特征的连通域进行标记从而来确定目标的位置。实验结果表明,...
针对三维视觉测量中棋盘格标定板的角点检测,给出了基于单应性矩阵这一计算机视觉重要工具为基础的检测方法。首先通过点选得到待测角点外接四边形的4个角点坐标,接着利用单应性矩阵映射得到所有角点的初始位置,最后综合内插值法、Harris算子、Forstner算子、SVD方法等方法对所有角点进一步精确定位。实...
针对目标和背景具有空间连续性的特点,提出一种基于核密度估计和马尔科夫随机场的运动目标检测方法。首先利用核密度估计计算像素点属于背景的概率密度,在特征向量中加入颜色空间运动矢量分量来提高对背景扰动和光照变化的鲁棒性;然后构造马尔科夫随机场,提出一种马尔科夫随机场能量函数代价项的构造方法,通...
为了提高语音信号端点检测的准确率,提出了改进的端点检测方法。该方法在传统基于能量和过零率的端点检测方法基础上,加入第三道门限——近似熵,对信号进行三级门限检测。仿真实验表明,该方法比传统方法更有效、更优越,能够比较准确的检测语音信号。 ...