虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

负荷

  • 电网无功补偿容量的选择

    根据工程实践经验, 介绍了几种常用的无功补偿容量选择方法。详细描述了根据提高功率因数、降低线损、提高末端电压、经济无功负荷的需要及统计估算法等来选择无功补偿容量, 并进行了相关计算。所介绍的选择方法为确定经济合理的无功补偿容量提供了参考价值。

    标签: 电网 无功补偿 容量

    上传时间: 2013-11-24

    上传用户:koulian

  • 风电储能系统能量调度策略研究

    为了改善风电场发电的稳定性,抑制风电引起的电压波动与闪变,提高含风电电力系统的稳定性问题成为重要的研究内容,本文在简要介绍风电的特点的基础上,针对风电并网带来的电能质量及稳定性等问题,阐述了基于能量调度技术的解决方案,详细介绍了基于模糊理论"最大-最小"算法的调度系统控制器和系统其它主要部分的模型及仿真结果。控制器根据负荷用电量预测信息控制储能系统的充放电,不仅能有效抑制并网后电网的电能波动也能优化风电的发电质量。MATLAB仿真结果表明,风电储能系统能量调度策略和控制器是有效的,该系统能够有效减小风电场并网功率的波动。

    标签: 风电 储能系统 能量 调度策略

    上传时间: 2013-10-10

    上传用户:my_cc

  • 供配电工程设计指导

      供配电工程设计常用技术数据 (一)   (一) 负荷计算部分   (二) 短路计算部分   (三)电线电缆截面选择计算部分(1)   (一)负荷计算部分   附录表2-1 各类建筑物的用电指标   附录表2-2 住宅每户用电指标   附录表2-3 工厂用电设备组的需要系数及功率因数值   附录表2-4 照明用电设备的需要系数   附录表2-5民用建筑用电设备组的需要系数及功率因数值   附录表2-6 住宅用电负荷需要系数   附录表2-7工厂用电设备组的利用系数及功率因数值   附录表2-8 用电设备组的附加系数Ka   附录表2-9 不同行业的年最大负荷利用小时数Tmax与年最大负荷损耗小时数τ

    标签: 供配电 工程 设计指导

    上传时间: 2013-11-15

    上传用户:杜莹12345

  • 电气主接线阐述

      Ò1、110KV侧主接线   Ò电气主接线的拟定:该变电站进出线数目为4回,110KV侧负荷为15MW,变压器为两台容量为12.5MW,基本上考虑到负荷的远期发展,故可用无母线的简单接线方案,有桥形接线方案,角形接线方案。另外单母分段接线方式可靠性、经济性也较高。下面分别就三种接线方式展开讨论。   Ò桥形接线   Ò角形接线   Ò单母分段接线   Ò作为一个不大的变电站,由于断路器的价格昂贵,用角形则成本比较大;且设备选型和继电保护的工作都不易进行。考虑选用单母分段的接线方式。当一段母线发生故障时,分段断路器自动切除故障段,保证正常母线不间断供电,提高了供电的可靠性。同时在主变压器110KV侧中性点经隔离开关接地并装设避雷器进行防雷保护,也提高了可靠性。而且相比节省了两台断路器,投资大大降低,综合考虑,还是选择单母分段的接线(见主接线图110KV侧)。

    标签: 电气主接线

    上传时间: 2014-12-24

    上传用户:shaojie2080

  • TSC系列可控硅动态无功功率补偿器

      TSC系列可控硅动态无功功率补偿器采用大功率可控硅组成的无触点开关,对多级电容器组进   行快速无过渡投切,克服了传统无功功率补偿器因采用机械触点烧损,对电容冲击大等缺点。对各   种负荷均能起到良好的补偿效果。 TSC-W型补偿器采用的三相独立控制技术解决了三相不平衡冲   击负荷补偿的技术难题,属国内首创,填补了国内空白。

    标签: TSC 可控硅 动态 无功功率

    上传时间: 2014-12-24

    上传用户:199311

  • 影响电力系统电压稳定性的因素分析

    本文主要介绍在电力系统中, 对电压稳定性的影响因素。首先分析了电压稳定性遭受破坏的机理, 按照系统中影响电压稳定性的设备( 同步电机、变压器、新型无功补偿器、并联电容器以及负荷等) 分别进行了分析。

    标签: 电力系统 电压稳定性

    上传时间: 2013-11-09

    上传用户:lmq0059

  • 基于LM2576的高可靠MCU电源设计

    嵌入式控制系统的MCU一般都需要一个稳定的工作电压才能可靠工作。而设计者多习惯采用线性稳压器件(如78xx系列三端稳压器件)作为电压调节和稳压器件来将较高的直流电压转变MCU所需的工作电压。这种线性稳压电源的线性调整工作方式在工作中会大的“热损失”(其值为V压降×I负荷),其工作效率仅为30%~50%[1]。加之工作在高粉尘等恶劣环境下往往将嵌入式工业控制系统置于密闭容器内的聚集也加剧了MCU的恶劣工况,从而使嵌入式控制系统的稳定性能变得更差。

    标签: 2576 MCU LM 电源设计

    上传时间: 2013-11-08

    上传用户:哈哈haha

  • 10 kV TV二次侧电源供电方式探讨

    在实际工作中,遇到一些厂矿企业的业扩报装,电站规模不大,但申报的10kV配变容量往往大于800kVA,一般为1000~2000kVA。如果选择干式变压器,由于目前国内厂家生产的熔丝最大额定电流为125A,即所供的最大负荷不超过2000kW,所以2000kVA以下的干式变压器和800kVA以下的油浸式变压器保护用负荷开关-熔断器组合即可。可是对于800kVA及以上的油浸式变压器和2000kVA以上的干式变压器,由于涉及到重瓦斯、超高温自动跳闸的要求,配变必须配置高压开关柜,现在的开关柜兼保护、控制、操作、信号于一身,功能齐全,选型已经不是问题,重要的问题是保护控制的电源供电方式如何选取。

    标签: 10 kV 电源供电 方式

    上传时间: 2013-10-18

    上传用户:koulian

  • 矿区供电

    淮南煤矿区地跨淮河两岸,辖有大通、田家庵、谢家集、八公山、潘集5个行政区,人口106.30万,是国家大型煤炭生产基地之一。淮南供电始于民国19年(1930年)4月,当时仅有1台7.5千瓦直流发电机发电,供九龙岗矿场地面照明。民国25年,九龙岗东西两矿,有1路1.70公里的2.3千伏送电线相联,各装1台10千伏安变压器。民国27年后,日本侵略军占领淮南,在大通、九龙岗两区建矿采煤,掠夺煤炭资源,民国32年,建成下窑(田家庵)发电所,架设经大通至九龙岗22千伏同杆(铁塔)双固路输电线,和大通、九龙岗2个变电所,以3.3千伏向矿井配电。抗日战争胜利后,民国36年4月,淮南路矿公司架设田家庵至八公山22千伏输电线。至此22千伏线路全长37.10公里,变电所4个,降压变压器11台,总容量7500千伏安。民国37年售电量1189.60万千瓦·时,主要供煤矿用电。建国后,先后对谢一、谢二、谢三矿和李咀孜矿进行勘探建井。1954年,原22千伏线路和变电所升压为35千伏供电。1958年起以110千伏电压供电。至1972年,发展成为工商业区和政治文化中心的东部地区,也升压为110千伏供电。1975年淮河北岸潘集矿区开始建设,负荷中心北移,由田家庵电厂出线跨越淮河至潘集矿区的110千伏输变电工程同时投运。1978~1982年间,淮南矿区又先后建成田家庵电厂经西山变电所至淮河北岸芦集变电所的220千伏系统。1985年,田家庵、洛河电厂装机总容量达90.10万千瓦,市内供电网相应加强,全矿区已形成主要由田家庵电厂110千伏母线和220千伏西山变电所、芦集变电所3点分片供电,以220千伏和110千伏高压配电网联合供电的格局。同时,一些大型厂矿都有自备35千伏及以上变电所,并向附近中小企业转供电,形成东部田家庵、大通两区,中部望峰岗地区,西部谢集、八公山两区,淮河北岸潘集区组成的4个公用中低压配电网络。1985年,全市最高负荷19.55万千瓦,供电量16亿多千瓦·时。其中,煤炭工业最高负荷9.34万千瓦,用电量4.99亿千瓦·时,占全市用电量的三分之一。

    标签: 矿区供电

    上传时间: 2013-10-12

    上传用户:fandeshun

  • 高压配电网的保护措施

    高压配电网的保护措施有:一、电网相间短路的电流保护。正常运行时输电线路上流过负荷电流,母线电压约为额定电压。当输电线路发生短路时,故障相电流增大。根据这一特征,可以构成反应故障时电流增大而动作的电流保护。对于输电线路相间短路通常采用三段式电流保护即无时限电流速断保护(电流I段),限时电流速断保护(电流II段),和定时限过电流保护(电流III段)。其中电流I段、II段共同构成线跌的主保护。III段为后备保护。1、无时限电流速断保护。在保证选择性和可靠性的前提下,根据对继电保护快速性的要求,原则上应装设快速动作的保护装置,使切除故障的时间尽可能短。反应电流增加,且不带时限动作的电流保护称为无时限电流速断保护。在单侧电源辐射形电网为切除线路故障,需在每条线跌电源侧装设断路器和相应的保护。假设线路L1、L2分别装有电流速断保护1和保护2,当线路L1上发生短路时,希望保护1能瞬时动作。但从选择要求出发,在下一条线路即L2首端K2点短路时,保护1能瞬时动作。但从选择性要求出发,在下一条线路L2首端K2点短路时,保护1不应动作,而应由保护2动作切除故障,为使保护1在K2点短路时不起动,必须使它的动作电流大于K2点短路时的最大短路电流,又称作按躲过一下条线路出口处短路的条件整定。

    标签: 配电网 保护

    上传时间: 2013-11-16

    上传用户:zhengjian