现有数字信号自动调制识别方法大多只适用于无记忆信号,如PSK、ASK、FSK信号等。将有记忆 信号(MSK信号)和无记忆信号一起考虑,提出了一种改进的数字信号自动识别方法。该方法采用信号的瞬时统 计量作为特征参数,采用多层神经网络作为分类器。计算机仿真表明:当噪声采用高斯白噪声,并且信噪比大于 l5 dB时,识别率高于96% ;当信噪比不低于l0 dB时,识别率不低于90%。
上传时间: 2014-01-13
上传用户:wangchong
射频识别(Radio Frequency Identification,RFID)是一种允许非接触式数据采集的自动识别技术。其中工作在超高频(Ultra High Frequency,UHF)频段的无源RFID系统,由于在物流与供应链管理等领域的潜在应用,近年来得到了人们的广泛关注。这种系统所使用的无源标签具有识别距离长、体积小、成本低廉等突出特点。目前在市场上出现了各种品牌型号的UHF RFID无源标签,由于不同品牌型号的标签在设计与制造工艺上的差异,这些标签在性能表现上各不相同,这就给终端用户选择合适自己应用的标签带来了困难。RFID基准测试就是在实际部署RFID系统前对RFID标签的性能进行科学评估的有效手段。然而为了在常规实验室条件下得到准确公正的测试结果,需要对基准测试的性能指标及测试方法学开展进一步的研究。本文正是研究符合EPC Class1 Gen2标准的RFID标签基准测试。 本文首先分析了当前广泛应用的超高频无源RFID标签基准测试性能指标与测试方法上的局限性与不足之处。例如,在真实的应用环境中,由于受到各种环境因素的影响,对同一品牌型号的标签,很难得到一致的识读距离测试结果。另外,在某些测试场景中,使用识读速率作为测试指标,所得到的测试结果数值非常接近,以致分辨度不足以区分不同品牌型号标签的性能差异。在这些分析基础上,本文把路径损耗引入了RFID基准测试,通过有限点的测量与数据拟合分别得到不同类型标签的路径损耗方程,结合读写器天线的辐射方向图,进一步得到各种标签受限于读写器接收灵敏度的覆盖区域。无源标签由于其被动式能量获取方式,其实际工作区域仍然受限于前向链路。本文通过实验测试出这些标签的最小激活功率后,得出了各种标签在一定读写器发射功率下的激活区域。完成这些步骤后,根据这两种区域的交集可以确定标签的工作区域,从而进行标签间的比较并达到基准测试的目的,并能找出限制标签工作范围的瓶颈。 本文最后从功率损耗的角度研究了标签之间的相互干扰,为用户在密集部署RFID标签的场景中设置标签之间的最小间隔距离具有重要的参考意义。
上传时间: 2013-04-24
上传用户:hbsunhui
人脸自动识别技术是模式识别、图像处理等学科的一个最热门研究课题之一。随着社会的发展,各方面对快速有效的自动身份验证的要求日益迫切,而人脸识别技术作为各种生物识别技术中最重要的方法之一,已经越来越多的受到重视。对于具有实时,快捷,低误识率的高性能算法以及对算法硬件加速的研究也逐渐展开。 本文详细分析了智能人脸识别算法原理,发展概况和前景,包括人脸检测算法,人眼定位算法,预处理算法,PCA和ICA 算法,详细分析了项目情况,系统划分,软硬件平台的资源和使用。并在ISE软件平台上,用硬件描述语言(verilog HDL)对算法部分严格按照FPGA代码风格进行了RTL 硬件建模,并对C++算法进行了优化处理,通过仿真与软件算法结果进行比对,评估误差,最后在VirtexII Pro FPGA 上进行了综合实现。 主要研究内容如下: 首先,对硬件平台xilinx的VirtexII Pro FPGA 上的系统资源进行了描述和研究,对存储器sdram,RS-232 串口,JTAG 进行了研究和调试,对Coreconnect的OPB总线仲裁机理进行了两种算法的比较,RTL 设计,仿真和综合。利用ISE和VC++软件平台,对verilog和C++算法进行同步比较测试,使每步算法对应正确的结果。对软硬件平台的合理使用使得在项目中能尽可能多的充分利用硬件资源,制板时正确选型,以及加快设计和调试进度。其次,对人脸识别算法流程中的人脸检测,人眼定位,预处理,识别算法分别进行了比较研究,选取其中各自性能最好的一种算法对其原理进行了分析讨论。人脸检测采用adaboost 算法,因其速度和精度的综合性能表现优异。人眼定位采用小块合并算法,因为它具有快速,准确,弱时实的特点。预处理算法采用直方图均衡加平滑的算法,简单,高效。 识别算法采用PCA 加ICA 算法,它能最大的弱化姿态和光照对人脸识别的影响。 最后,使用Verilog HDL 硬件描述语言进行算法的RTL 建模,在C++算法的基础上,保证原来效果的前提下,根据FPGA 硬件特点对算法进行了优化。视频输入输出是人脸识别的前提,它提供FPGA 上算法需要处理的数据,预处理算法在C++算法的基础上进行了优化,最大的减少了运算量,提高了运算速度,16 位计算器模块使得在算法实现时可以根据系统要求,在FPGA的ip 核和自己设计的模块之间选择性能更好的一个来调用,FIFO的设计提供同步和异步时钟域的数据缓存。设计在ISE和VC++软件平台同时进行,随时对verilog和C++数据进行监测和比对。全部设计模块通过仿真,达到预定的性能要求,并在FPGA 上综合实现。
上传时间: 2013-07-13
上传用户:李梦晗
生物特征识别是指通过计算机,利用人体固有的生理特征,如指纹,静脉来进行个人身份鉴别的技术。由于生物特征唯一性和不变性,使得生物特征识别与传统的方法如数字密码和身份证相比,具有更高的安全性和易用性。传统的高性能自动识别系统大多基于PC平台联机应用,然而在实际应用中往往对自动识别系统要求有更高的便携性和易用性,嵌入式技术的快速发展使得实现这样的系统变为了可能。 生物特征识别系统主要由通用模块的控制系统与非通用模块的图像采集设备与识别算法组成。本文针对通用模块与非通用模块接口问题进行研究和设计,实现了一个工作良好的嵌入式平台。 本课题在设计核心板、扩展板、转接板的硬件基础上,移植实时操作系统Linux,编写各种接口与模块的驱动、多路摄像头切换程序,并很好的解决了摄像头采集生物特征时光强控制问题,为很好的采集到清晰图像提供了一个良好稳定的硬件平台。 本课题所设计的嵌入式系统通过测试,做了大量的实验,并将所采集到的手指静脉图像进行讨论分析,具有实用价值。
上传时间: 2013-06-03
上传用户:lguotao
人脸识别技术作为生物识别技术之一,是模式识别在图像领域中的具体运用,其应用前景非常广阔,可以应用到身份证件的鉴别、自动门禁控制系统、银行取款机、家庭安全,图片检索等领域。 人脸识别系统主要分为人脸检测定位,特征提取和人脸分类三部分。人脸的检测和定位,即从输入的图像中找到人脸及人脸存在的位置,并将人脸从背景中分离出来。在特征提取部分,先对原始人脸数据进行特征提取,之后原始数据由维数较少的有效特征数据表示并存储在数据库中,接下来进行人脸分类,在识别待测人脸图像时,将待测图像的特征数据与数据库中存储数据相比对,判断是否为库中的某一人,从而实现自动识别人脸的目的。 在过去的十年里,人脸识别技术一直是图像处理领域里具有挑战性的课题,随着研究的深入,许多人脸检测及识别算法被提出来。其中基于主成分分析的Eigenface的算法及其变形已经成为测试人脸识别系统性能的基准算法;同时Adaboost人脸检测算法,在PC上基本可以达到实时,在嵌入式产品广泛应用的今天,只有让人脸识别算法在嵌入式平台上实现,才能获得更广阔的应用,本文研究了在嵌入式平台上Adaboost人脸检测算法的性能。 嵌入式是后PC时代的一个亮点,目前已经应用在社会生活的方方面面。嵌入式产品的开发平台分为包括很多,如:DSP,ARM,PowerPC等等。本文采用的ARM9作为嵌入式开发平台,研究人脸识别在ARM平台的性能,为实用的嵌入式人脸识别系统的设计提供参考。 本文从PC平台的软件实现入手,分别实现了PC平台下的AdaBoost人脸检测算法和PCA人脸识别算法,分析了现象及结果,接下来搭建了基于ARM嵌入式系统的硬件平台,对AdaBoost人脸检测算法进行了硬件平台的移植,并得出相应实验效果。
上传时间: 2013-05-31
上传用户:saharawalker
射频识别(RFID,Radio Frequency Identification)是一种利用电磁波双向传输实现自动识别的技术。近年来,射频识别技术在物流、交通、身份识别等生产生活领域的应用日益扩大。相比于13.56MHz射频识别系统,915MHz射频识别系统在识别距离,阅读速度方面有更大的优势,是目前射频识别产品研究的热点。 本文在理解ISO/IEC18000-6C协议的基础上,首先研究用于本系统的基本理论,包括射频识别技术和嵌入式技术,提出一款基于ISO/IEC18000-6C协议的915MHz射频识别读卡器的解决方案。在硬件部分,以Intel公司开发的R1000作为射频收发模块的核心;选用ATMEL公司的ARM处理器AT91SAM7S256作为控制单元的主控制器,在ARM处理器上运行μC/OS-II嵌入式实时操作系统,采用多任务实现和其他功能模块的通信。软件部分为系统移植了μC/OS-II操作系统,使用C与汇编语言的混合编程编写Bootloader,编写了各种硬件设备的驱动程序,使用C语言实现了串行通信程序,实现与上位机通信并实现对程序的更新。本文所设计的射频识别系统具有模块化设计、高可靠性等特点。实验表明,这种设计方案能够达到ISO/IEC18000-6C协议要求。
上传时间: 2013-07-18
上传用户:zklh8989
条码技术是随通信技术,计算机技术的发展应运而生的自动识别技术的一种。根据二进制编码规则对应形成的由对光反映率不同的条、空组成的图形,经光电扫描识读器扫描,将采集的信息经处理器进行处理,从而达到自动识别的目的。条码技术自出现以来,得到了人们的普遍关注,发展十分迅速,已广泛用于交通运输、商业、医疗卫生、制造业、仓储业、邮电业等领域,极大的提高了数据采集和信息处理的速度,提高了工作效率,并为管理的科学化、信息化和现代化作出了贡献。目前常用的是一维条码,但一维条码最大的弱点就是表征的信息量是有限的,需要依赖外部数据库支持,离开这个数据库条码本身就没有意义了。二维条码克服了这一弱点,它是在一维条码基础上形成的高密度、高信息量的条码,可以将大量信息在小区域内编码,它本身就是一个完整的数据文件,是实现证件、卡片等信息存储、携带并可以通过机器自动识读的理想方法。 本课题采用流行的嵌入式技术,采用S3C44BOX作为二维条码PDF417识别器的数据采集终端,该终端内嵌μC/OS-Ⅱ操作系统,将应用分解成多任务,简化了应用系统软件设计;使控制系统的实时性得到了保证,提高了系统的可靠性和稳定性;同时也增强了系统的可扩展性和产品开发的可延续性。 本课题的主要任务是PDF417(Portable Data File)二维条码图像的识别。先由扫描仪或照相机获取二维条码的原始图像,再由PC(Personal Computer)计算机中的图象处理程序对图象数据进行处理,然后在条码中定位单个码字符号的图像,利用算法识别出单个码字符号。本文在条码图像的预处理方面进行了算法改进,取得了较好的成果,能够有效的去掉干扰噪声和图像定位。通过实验结果表明:本课题研究的二维条码识别系统是比较令人满意的。
上传时间: 2013-08-01
上传用户:caiiicc
二维条码的识别和RFID技术是当今最主要的自动识别技术,分别适用于不同场合,具有保密性强、无接触式信息传递等特点,目前广泛应用于物流、公共交通、仓储、车辆识别等领域。 本文以RFID和条码技术为基础,设计出了一种新的应用模式:将RFID技术和条码技术与可移动的智能终端相结合,移动智能终端设备作为RFID模块和二维条码扫描模块的载体,RFID模块和二维条码扫描模块作为数据的采集主体,将采集到的数据传送给后台数据库,实现对RFID标签和二维条码信息的采集、处理与传输。物流终端以WinCE5.0操作系统为平台,具有可扩展功能的特性,支持基于WinCE开发的第三方软件的使用,缩短了开发周期。 本文针对手持式设备的特点和实际要求,对终端软硬件系统整体结构进行了规划,在研究了基于ARM9体系结构的Samsung S3C2440A处理器的基础上,完成了时钟电路、包括Nand Flash和SDRAM的存储器电路、RFID读写模块接口电路、条码扫描模块接口电路、串口电路、ⅡS音频电路、LCD/触摸屏接口电路的设计,并利用Platform Builder工具定制了适用于终端的WinCE操作系统。最后提出了设计的不足和改进之处。
上传时间: 2013-06-08
上传用户:zhoujunzhen
嵌入式人脸识别系统建立在嵌入式操作系统和嵌入式硬件系统平台之上,具有起点高、概念新、实用性强等特点。它涉及嵌入式硬件设计、嵌入式操作系统应用开发、人脸识别算法等领域的研究;嵌入式人脸识别系统携带方便、安装快捷、机动性强,可广泛应用于各类门禁系统、户外机动布控的实时监测等特殊场合,因此对嵌入式人脸识别的研究工作具有突出的理论意义和广泛的应用前景。 本文是上海市经委创新研究项目《射频识别RFID系统-自动识别和记录人群的身份》(编号:04-11-2)与上海市科委AM基金项目《基于ARM和RFID芯片的自组织安全监控系统的研制》(编号:0512)的主要研究内容之一。论文从构建自动人脸识别系统所需解决的若干关键问题入手,重点探讨了基于嵌入式ARM微处理器的实时人脸检测、关键特征定位、高效的人脸特征描述、鲁棒的人脸识别分类器及自动人脸识别系统设计等问题的研究。论文的主要工作和创新点表现在以下方面: 1实现了结合肤色校验的Haar特征级联分类器嵌入式实时人脸检测,提出了基于人脸约束的人眼Haar特征RSVM级联分类器人眼检测算法和基于遮罩掩磨与椭圆拟合的瞳孔定位算法。 复杂背景中的人脸检测是自动人脸识别系统首先要解决的关键问题,通过对基于肤色模型和基于Haar特征级联强分类器的人脸检测算法的分析研究,综合两个算法的优点,提出了基于肤色模型校验和Haar特征级联强分类器的嵌入式实时人脸检测算法。实验结果表明,该算法不仅解决了复杂背景中的类肤色和类人脸结构问题,而且具有较高的检测率和较快的检测速度,同时对光照、尺度等变化条件下的人脸检测也具有较强的鲁棒性。 人眼检测与瞳孔定位在人脸归一化和有效人脸特征抽取等方面起着非常重要的作用,为了快速检测人眼并精确定位人眼瞳孔中心,论文提出了基于人脸约束的人眼Haar特征RSVM级联分类器人眼检测算法和基于遮罩掩磨与椭圆拟合的瞳孔定位算法,首先利用人眼检测分类器在人脸区域内完成对人眼位置的检测,然后通过对检测到的人眼进行遮罩掩磨、简单图像形态学变换及椭圆拟合实现瞳孔中心的精确定位。测试结果表明该算法只需几百毫秒便能完成人眼检测与瞳孔中心定位整个过程,在保证检测速度较快的同时,还能确保较高的定位精度。 2 针对传统线性判别分析法存在的小样本问题(sss),通过调整Fisher判别准则,实现了自适应线性判别分析算法及相应的人脸识别方法人脸识别中的小样本问题使线性判别分析算法的类内散布矩阵发生严重退化,导致问题无法求解。本文在人脸识别小样本问题的基础上,通过调整Fisher判别准则,利用类间散布矩阵的补空间巧妙地避开类内散布矩阵的求逆运算,通过训练集每类样本的样本数信息自适应改变调整参数,实现了自适应线性判别分析算法,实验结果表明,该算法能有效解决人脸识别中的小样本问题。 3 提出了基于有效人脸区域的Gabor特征抽取算法,有效地解决了Gabor特征抽取维数过高的问题。 Gabor小波对图像的光照、尺度变化具有较强鲁棒性,是一种良好的人脸特征表征方法。但维数过高的Gabor特征造成应用系统的维数灾难,为解决Gabor特征的维数灾难问题,论文第四章提出了基于有效人脸区域的Gabor特征抽取算法,该算法不仅有效地降低了人脸特征向量维数,缩小了人脸特征库的规模,同时降低了核心算法的时间和空间复杂度,而且具有与传统Gabor特征抽取算法同样的鲁棒性。 4 结合有效人脸区域的Gabor特征抽取、自适应线性判别分析算法和基于支持向量机分类策略,提出并实现了基于支持向量机的嵌入式人脸识别和嵌入式人像比对系统支持向量机通过引入核技巧对训练样本进行学习构造最小化错分风险的最优分类超平面,不仅具有强大的非线性和高维处理能力,而且具有更强的泛化能力。本文研究了支持向量机的多类分类策略和训练方法,并结合论文中提出的基于有效人脸区域的Gabor特征提取算法、自适应线性判别分析算法,首次在基于Windows CE操作系统的嵌入式ARM平台中实现了具有较强鲁棒性的嵌入式自动人脸识别系统和嵌入式人像比对系统。 5 提出并初步实现了基于客户机/服务器结构无线网络模型的远距离人脸识别方案为解决嵌入式人脸识别系统在海量人脸库中进行识别的难题,论文提出并初步实现了基于客户机/服务器结构无线网络模型的嵌入式远距离人脸识别方案。 客户机(嵌入式平台)完成对人脸图像的检测、归一化处理和人脸特征提取,然后通过无线网络将提取后的人脸特征数据传输到服务器端,由服务器在海量人脸库中完成人脸识别,并将识别后的结果通过无线网络传输到客户机显示输出,从而实现基于客户机/服务器无线网络模型的嵌入式远距离人脸识别方案。 6 结合我们开发的基于ARM的嵌入式自动人脸识别系统和嵌入式人像比对系统,从系统设计的角度探讨了在嵌入式系统中进行人脸识别应用设计的思路及应该注意的问题虽然嵌入式人脸识别系统的性能很大程度上取决于高效的人脸特征描述和鲁棒的人脸识别核心算法。但是,嵌入式系统的设计思想对嵌入式人脸识别系统的性能影响同样值得重视。本文第六章重点阐述了嵌入式自动人脸识别应用系统的设计思路,并结合我们自主开发的嵌入式自动人脸识别系统和嵌入式人像比对系统从系统设计的角度探讨了嵌入式人脸识别应用系统设计中应该注意的关键技术问题。 结合本文提出的算法我们在PC上完成对人脸识别分类器的训练,然后在嵌入式ARM开发平台上实现了嵌入式自动人脸识别、嵌入式人像比对两个便携式人员身份认证系统,经测试运行效果良好。所提出的人脸识别算法不仅具有一定的理论参考价值,而且对于嵌入式系统应用开发、AFR应用系统开发也具有一定的借鉴意义。
上传时间: 2013-05-18
上传用户:我们的船长
飞机特征点图像的识别是航空试飞领域中计算机视觉研究的重要课题,在基于图像的视频安全监控、自动识别与智能人机交互方面有着重要的研究价值。其检测算法经过长时间的发展,已经取得了显著的成绩。本文中对Paul Viola提出的基于积分图像和AdaBoost的检测方法进行了深入研究、改进,并针对实际问题成功应用到飞机特征点图像的快速检测中。
上传时间: 2013-11-04
上传用户:日光微澜