网络信息

共 58 篇文章
网络信息 相关的电子技术资料,包括技术文档、应用笔记、电路设计、代码示例等,共 58 篇文章,持续更新中。

VI电子称程序下载

资料介绍说明:<br /> 1.本程序只在Windows XP 平台上经过完整测试,因此只能保证该程序在winXP系统下运行正确。<br /> 2.由于本程序使用了Access数据库,因此需要计算机安装有Microsoft Access。<br /> 3.将本程序下载到本地计算机后,需要建立与用户信息.mdb的ODBC链接。建立方法如下: 进入开始菜单 控制面板 管理工具 数据源(ODBC),建立

信号分离电路(ppt)

<P>第四章&nbsp; 信号分离电路<BR>&nbsp;<BR>第四章&nbsp; 信号分离电路 第一节&nbsp; 滤波器的基本知识<BR>一、滤波器的功能和类型<BR>1、功能:滤波器是具有频率选择作用的电路或运算处理系统,具有滤除噪声和分离各种不同信号的功能。<BR>2、类型:<BR>按处理信号形式分:模拟滤波器和数字滤波器<BR>按功能分:低通、高通、带通、带阻<BR>按电路组成分:LC

凌力尔特数字系统的线性电路

<p> 凌力尔特数字系统的线性电路&mdash;凌力尔特一直致力服务全球模拟产品用户,满足日益增长的严格模拟产品设计的需求。公司具有超强的创新能力,每年推出的新产品超过200款,该公司产品的应用领域包括电信、蜂窝电话、网络产品、笔记本电脑和台式电脑等等。</p> <p> <img alt="" src="http://dl.eeworm.com/ele/img/319641-111231151

AN-1064了解AD9548的输入基准监控器

<p> &nbsp;</p> <div> 如AD9548数据手册所述,AD9548的输入端最多可支持八个独立参考时钟信号。八路输入各有一个专用参考监控器,判断输入参考信号的周期是否满足用户要求。图1是参考监控器和必要支持元件的框图。参考监控器测量输入参考信号的周期,并声明信号是过慢还是过快,即表示参考信号有误。该信息保存在参考状态寄存器内(各参考监控器具有用户可读取的专用状态寄存器)。虽然参考

高增益K波段MMIC低噪声放大器

<p> &nbsp;</p> <div> 基于0.25gm PHEMT工艺,给出了两个高增益K 波段低噪声放大器.放大器设计中采用了三级级联增加栅宽的电路结构,通过前级源极反馈电感的恰当选取获得较高的增益和较低的噪声;采用直流偏置上加阻容网络,用来消除低频增益和振荡;三级电路通过电阻共用一组正负电源,使用方便,且电路性能较好,输入输出驻波比小于2.0;功率增益达24dB;噪声系数小于3.5dB

远程信息处理数字融合--如何应对新兴标准和协议

<div> Digital convergence, in recent history, has been prevalentin the consumer equipment domain and the designengineers in this area have been struggling with a plethoraof emerging standards and pro

一种基于LBT的分布式图像压缩算法

<span style="color: rgb(0, 0, 0); font-family: 'Trebuchet MS', Arial; font-size: 11.818181991577148px; line-height: 21px; ">无线多媒体传感器网络(WMSNs)中传感器节点采集的数据量非常大,在传输前需对大数据量的多媒体信息进行压缩处理,但是单节点能源受限,存储、处理能力相对较

IBIS模型之第2部分-IBIS模型总质量的确定

<div> 本文是三部曲系列文章的第 2 部分。第 1 部分(请见参考文献 1)讨论了数字输入/输出缓冲器信息规范 (IBIS) 仿真模型的基本要素,以及它们在 SPICE 环境中的产生过程。本文(第 2 部分)将研究 IBIS 模型正确性检测。第 3 部分将刊登在后续《模拟应用期刊》上,其将介绍 IBIS 用户如何对印刷电路板 (PCB)开发阶段出现的信号完整性问题进行研究。<br /> <

基于改进粒子群算法的舰船电力系统网络重构

<span id="LbZY">舰船电力系统网络重构可以看作为一个多目标、多约束、多时段、离散化的非线性规划最优问题。根据舰船电力系统特点,提出了一种改进的粒子群优化算法。在传统粒子群算法的基础上,运用混沌优化理论进行初始化粒子的初始种群,提升初始解质量;同时,引进遗传操作以改进粒子群算法易陷入局部极值的缺点。通过对典型的模型仿真表明,该算法具有更好的寻优性能,并且有效地提高了故障恢复的速度与精度

板级模拟电路仿真收敛性技术研究

<span id="LbZY">电路仿真不仅应用于电路设计阶段,也用于电路故障诊断中。电路仿真结果能够为建立电路测试诊断知识库提供重要的参考信息。本文简要介绍了电路仿真收敛性的相关理论,分析了板级模拟电路直流分析和瞬态分析的仿真收敛性问题,深入探讨了电路仿真技术的原理和发展,重点研究了新的电路仿真算法,并将其应用于模拟电路仿真系统中。<br /> <img alt="" src="http://d

MT-009 数据转换器代码——您能解译这些代码吗?

模数转换器(ADC)将模拟量——现实世界中绝大部分现象的特征——转换为数字语言,以便用于信息处理、计算、数据传输和控制系统。数模转换器(DAC)则用于将发送或存储的数据,或者数字处理的结果,再转换为现实世界的变量,以便控制、显示信息或进一步进行模拟处理

传输线变压器在射频功率放大器中的应用

<div> 介绍由传输线变压器(又称为魔T 混合网络) 构成功率合成和功率分配的工作原理以及在射频大功率放大器中的应用。<br /> <img alt="" src="http://dl.eeworm.com/ele/img/829019-12021G64640104.jpg" />

一种改进的线性图像插值算法

<span style="color: rgb(0, 0, 0); font-family: 'Trebuchet MS', Arial; font-size: 11.818181991577148px; line-height: 21px; ">针对传统的双线性插值法在对图像进行插值后会不可避免的产生边缘模糊的问题,提出了一种改进的线性插值法,该算法首先把待插值点分为三类,然后分别选取合适的已知

时钟分相技术应用

<p> 摘要: 介绍了时钟分相技术并讨论了时钟分相技术在高速数字电路设计中的作用。<br /> 关键词: 时钟分相技术; 应用<br /> 中图分类号: TN 79  文献标识码:A   文章编号: 025820934 (2000) 0620437203<br /> 时钟是高速数字电路设计的关键技术之一, 系统时钟的性能好坏, 直接影响了整个电路的<br /> 性能。尤其现代电子系统对性

基于BP神经网络的PID控制器的研究与实现

基于BP神经网络的PID控制器的研究与实现:<br /> <img alt="" src="http://dl.eeworm.com/ele/img/177094-120401152159417.jpg" />

RC桥式振荡电路性能研究与仿真

<span style="color: rgb(0, 0, 0); font-family: 'Trebuchet MS', Arial; font-size: 11.818181991577148px; line-height: 21px; ">针对RC桥式低频信号振荡器的性能和应用,对振荡电路的基本结构及性能指标进行探讨,分别从选频网络、稳幅环节及频率可调三个方面对电路性能进行改进,并结合仿真

4-20mA~0-5V两通道模拟信号隔离采集A D转换器

isoad系列产品实现传感器和主机之间的信号安全隔离和高精度数字采集与传输,广泛应用于rs-232/485总线工业自动化控制系统,4-20ma / 0-10v信号测量、监视和控制,小信号的测量以及工业现场信号隔离及长线传输等远程监控场合。通过软件的配置,可接入多种传感器类型,包括电流输出型、电压输出型、以及热电偶等等。 产品内部包括电源隔离,信号隔离、线性化,a/d转换和rs-485串行通信等模块

Ku波段30W固态功率放大器

<div> 本文叙述了研制的应用于VSAT卫星通信的Ku波段30W固态功率放大器(SSPA)。阐述了该固态功率放大器的方案构成和关键部分的设计,包括功率合成网络、微带.波导转换的设计;功率合成电路的设计,特别是波导魔T的优化设计。研制的30W固态功率放大器的主要性能为:中心频率14.25GHz,带宽500MHz,P.1dB输出功率30W,大信号增益45dB,带内波动小于5dB。<br /> <

基于ADS高效率微波功率放大器设计

<span style="color: rgb(0, 0, 0); font-family: 'Trebuchet MS', Arial; font-size: 11.818181991577148px; line-height: 21px; ">基于ADS软件,选取合适的静态直流工作点,采用负载牵引法得到LDMOS晶体管BLF7G22L130的输出和输入阻抗特性,并通过设计和优化得到最佳的共轭匹

LC正弦波振荡电路基础知识

<P>  LC 正弦波振荡电路</P> <P>  如果将该电路作为选频网络和正反馈,再加上基本放大电路和稳幅电路就构成LC正弦波振荡电路。</P> <P>  将电容和电感并联起来,在电容上施加一定电压后可产生零输入响应。这种响应在电容的电场和电感的磁场中交替转换便可形成正弦波振荡。</P> <P>  LC正弦波振荡电路的选频电路由电感和电容构成,可以产生高频振荡(&gt;1MHz)。</P>