数据结构线性表的链表存储表示(结构)及实现
上传时间: 2014-11-27
上传用户:Andy123456
数据结构线性表的链表存储表示(结构)及实现
上传时间: 2013-12-31
上传用户:1159797854
对顺序存储的线性表进行一些操作。主要包括:各种位置的插入、删除操作、显示数据、查找、更新、统计以及学生数据文件的读写操作等。要求线性表采用类的定义
上传时间: 2013-12-24
上传用户:bjgaofei
采用顺序或链式存储方式存储线性表,在此基础上实现线性表的各个操作,以及线性表的合并操作。
上传时间: 2014-01-08
上传用户:zuozuo1215
只要就是用来实现顺序线性表的功能,用c++语言实现的,是比较精简的数据结构。
标签: 线性
上传时间: 2017-09-24
上传用户:妄想演绎师
向量(x1,x2,…,xn)是一个长度为n的线性表 英文小写字母表(a,b,c,…,z)是一个长度为26的线性表
标签: 线性
上传时间: 2016-06-09
上传用户:梦-123
数据结构 线性表的应用 包括插入,删除,查找, 先建立一个空链表
上传时间: 2020-06-01
上传用户:1877091
单片机课程设计:采用51系列单片机和ADC设计一个数字电压表,输入为0~5V线性模拟信号,输出通过LED显示,要求显示两位小数。
标签: 数字电压表
上传时间: 2013-04-24
上传用户:快乐的小糗糗
目前国内的大多数通用直流电参数测量设备,精度等级一般为0.5级或0,2级,精度更高的测量仪表(校表)一般为0.1~0.05级。而数字仪表使用的CPU大多数仍采用8位或16位单片机,由于其处理速度慢,不易实现更多的功能。软件上还是采用汇编语言编程,流程上沿用传统的线性程序,不便于软件的升级和维护。而国外高精度的测量设备往往价格很高。为了更好地满足计算过程中准确性、精确性、快速性以及日后客户对仪表功能上的升级要求,克服目前国内现行的直流电参数测量仪器存在的局限,同时获得更高的性价比,本文在充分分析和吸收当前国内外数字仪表的先进技术和经验后,研制了一种基于32位ARM和嵌入式实时操作系统μC/OS-Ⅱ的智能直流校验表,精度已达到了0.05级,该仪器是目前国内直流电参数测量的最高性能仪器之一,可广泛用于实验室、计量院所、电力系统等部门作为0.1级、0.05级直流电压、电流测量标准或现场检测。 本文首先对直流表的各种测量功能和精度要求进行了分析,提出了仪器的总体框架和满足测量精度要求的措施。本装置硬件上采用ARM结构,以恩智浦公司的ARM微控制器(LPC2134)为控制核心,实现测量、校准、通信和显示功能。软件上则基于嵌入式实时操作系统μC/OS-Ⅱ进行了仪表的总体程序设计。 在介绍了对直流表硬件电路的设计及驱动程序的编写后,再简单阐述了μC/OS-Ⅱ的一些基本概念和在ARM微控制器(LPC2134)上的移植,并详细介绍了基于μC/OS-Ⅱ平台应用程序的任务划分,在设计了全部程序后,探讨了误差的分类和产生原因,并对实验结果进行了分析。
上传时间: 2013-06-25
上传用户:元宵汉堡包
TLC2543是TI公司的12位串行模数转换器,使用开关电容逐次逼近技术完成A/D转换过程。由于是串行输入结构,能够节省51系列单片机I/O资源;且价格适中,分辨率较高,因此在仪器仪表中有较为广泛的应用。 TLC2543的特点 (1)12位分辩率A/D转换器; (2)在工作温度范围内10μs转换时间; (3)11个模拟输入通道; (4)3路内置自测试方式; (5)采样率为66kbps; (6)线性误差±1LSBmax; (7)有转换结束输出EOC; (8)具有单、双极性输出; (9)可编程的MSB或LSB前导; (10)可编程输出数据长度。 TLC2543的引脚排列及说明 TLC2543有两种封装形式:DB、DW或N封装以及FN封装,这两种封装的引脚排列如图1,引脚说明见表1 TLC2543电路图和程序欣赏 #include<reg52.h> #include<intrins.h> #define uchar unsigned char #define uint unsigned int sbit clock=P1^0; sbit d_in=P1^1; sbit d_out=P1^2; sbit _cs=P1^3; uchar a1,b1,c1,d1; float sum,sum1; double sum_final1; double sum_final; uchar duan[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; uchar wei[]={0xf7,0xfb,0xfd,0xfe}; void delay(unsigned char b) //50us { unsigned char a; for(;b>0;b--) for(a=22;a>0;a--); } void display(uchar a,uchar b,uchar c,uchar d) { P0=duan[a]|0x80; P2=wei[0]; delay(5); P2=0xff; P0=duan[b]; P2=wei[1]; delay(5); P2=0xff; P0=duan[c]; P2=wei[2]; delay(5); P2=0xff; P0=duan[d]; P2=wei[3]; delay(5); P2=0xff; } uint read(uchar port) { uchar i,al=0,ah=0; unsigned long ad; clock=0; _cs=0; port<<=4; for(i=0;i<4;i++) { d_in=port&0x80; clock=1; clock=0; port<<=1; } d_in=0; for(i=0;i<8;i++) { clock=1; clock=0; } _cs=1; delay(5); _cs=0; for(i=0;i<4;i++) { clock=1; ah<<=1; if(d_out)ah|=0x01; clock=0; } for(i=0;i<8;i++) { clock=1; al<<=1; if(d_out) al|=0x01; clock=0; } _cs=1; ad=(uint)ah; ad<<=8; ad|=al; return(ad); } void main() { uchar j; sum=0;sum1=0; sum_final=0; sum_final1=0; while(1) { for(j=0;j<128;j++) { sum1+=read(1); display(a1,b1,c1,d1); } sum=sum1/128; sum1=0; sum_final1=(sum/4095)*5; sum_final=sum_final1*1000; a1=(int)sum_final/1000; b1=(int)sum_final%1000/100; c1=(int)sum_final%1000%100/10; d1=(int)sum_final%10; display(a1,b1,c1,d1); } }
上传时间: 2013-11-19
上传用户:shen1230