📚 粒子群优化技术资料

📦 资源总数:4978
📄 技术文档:1
💻 源代码:5910
粒子群优化(ParticleSwarmOptimization,PSO),又称微粒群算法,是由J.Kennedy和R.C.Eberhart等于1995年开发的一种演化计算技术,来源于对一个简化社会模型的模拟。其中“群(swarm)”来源于微粒群匹配M.M.Millonas在开发应用于人工生命(artificiallife)的模型时所提出的群体智能的5个基本原则。“粒子(particle)”是一个折衷的选择,因为既需要将群体中的成员描述为没有质量、没有体积的,同时也需要描述它的速度和加速状态。

🔥 粒子群优化热门资料

查看全部4978个资源 »

粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation).源于对鸟群捕食的行为研究 PSO同遗传算法类似,是一种基于叠代的优化工具。系统初始化为一组随机解,通过叠代搜寻最优值。但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。而是粒子...

📅 👤 源弋弋

📄 粒子群优化技术文档

查看更多 »

💻 粒子群优化源代码

查看更多 »
📂 粒子群优化资料分类