虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

电源供电

  • GC209隔离式微功率电源模块

    该电源使用时串联在电子设备上,并联在设备外置开关上,使用设备开关关闭后设备的漏电流作为输入电源,输出一个隔离的低压直流,在一些控制电路供电上面非常适合.。

    标签: 209 GC 隔离式 微功率

    上传时间: 2013-05-22

    上传用户:crazykook

  • 华为通信电源技术基础

    本课程通过对通信电源网络结构及基本配置的介绍,配合例题及防护的案例讲解,引导学员了解并掌握通信电源的基本知识及基本维护方法。学完本课程后,学员能够:了解通信电源在通信网络中的种类及地位;掌握交直流电源的配置;掌握通信电源中各模块的基本功能;掌握通信电源的基本防护方法。   作为通信系统的"心脏",通信电源在通信局(站)中具有无可比拟的重要地位。它包含的内容非常广泛,不仅包含48V直流组合通信电源系统,而且还包括DC/DC二次模块电源,UPS不间断电源和通信用蓄电池等。通信电源的核心基本一致,都是以功率电子为基础,通过稳定的控制环设计,再加上必要的外部监控,最终实现能量的转换和过程的监控。通信设备需要电源设备提供直流供电。电源的安全、可靠是保证通信系统正常运行的重要条件。

    标签: 华为 通信电源 技术基础

    上传时间: 2013-04-24

    上传用户:妄想演绎师

  • 电源测量与分析入门手册

    电源测量与分析入门手册 本入门手册将主要介绍如何使用示波器和专用软件进行开关电源设计测量。两个不同版本。都是中文的。 目录 简介 电源设计中的问题以及测量要求 示波器与电源测量 开关电源基础 准备进行电源测量 在一次采集中同时测量100 伏和100 毫伏电压 消除电压探头和电流探头之间的时间偏差 消除探头零偏和噪声 电源测量中记录长度的作用 识别真正的Ton 与Toff 转换 有源器件测量:开关元件 开关器件的功率损耗理论 截止损耗 开通损耗 详细了解SMPS 的功率损耗 安全工作区 动态导通电阻 di/dt dv/dt 无源器件测量:磁性元件 电感基础 用示波器进行电感测量 磁性元件功率损耗基础 用示波器进行磁性元件功率损耗测量 磁特性基础 用示波器测量磁性元件特性 输入交流供电测量 电源质量测量基础 SMPS 的电源质量测量 用示波器测量电源质量 使用正确的工具 用示波器进行电源质量测量

    标签: 电源测量 入门手册

    上传时间: 2013-07-03

    上传用户:jjj0202

  • 学习处理电源EMI

    关于 ‘‘地’’ 电路中参考点-零电位点,称为地点。开关电源中的‘‘地’’:: 公共端 (common)(common)-输出与输入参考点。例如-PFCPFC与后继变换器输入端的公共端。 电路中的地 (ground(ground--GND)GND)-所有电路共用参考-点。如辅助电源与PFCPFC及DC/DCDC/DC公共端。 大地 (earth(earth--E)电网供电设备通常以大地EE作为零电位。三相输配电三相中点接大地EE,同时引出中,线NN。 接地阻抗很小的大面积 ‘‘地’’称为地平面(Ground plane(plane)。

    标签: EMI 电源

    上传时间: 2013-04-24

    上传用户:1079836864

  • 几种常见开关电源电路图

    用UC3842做的开关电源的典型电路见图1。过载和短路保护,一般是通过在开关管的源极串一个电阻(R4),把电流信号送到3842的第3脚来实现保护。当电源过载时,3842保护动作,使占空比减小,输出电压降低,3842的供电电压Vaux也跟着降低,当低到3842不能工作时,整个电路关闭,然后靠R1、R2开始下一次启动过程。这被称为“打嗝”式(hiccup)保护。

    标签: 开关电源 电路图

    上传时间: 2013-04-24

    上传用户:564708051@qq.com

  • 带后备电池的多路隔离输出开关电源

    介绍了一种带后备电池的多路隔离输出开关电源,可用于大功率器件驱动电路的供电。在市电掉电的情况下,后备电池立即接入系统,保证多路输出开关电源的正常工作,提高整个驱动供电电源的可靠性。

    标签: 后备电池 多路 隔离 输出开关

    上传时间: 2013-11-24

    上传用户:781354052

  • 利用高效率SEPIC-Cuk转换器产生双供电轨

    虽然单电源轨到轨运算放大器已得到广泛使用,但常常必须从单一(正)输入供电轨产生两个供电轨,以便为模拟信号链的其他部分供电。这些部分的电流一般较低,正负电源具有相对匹配良好的负载。针对该问题,本文在常见的解决方案之外提出了一种更优的方法,该解决方案使用SEPIC-Cuk转换器,由一个输出不受调节的Cuk转换器连接到一个输出受到调节的SEPIC转换器的开关节点组成。这一组合产生的两个高效电源几乎能在所有条件下都非常好地保持一致。

    标签: SEPIC-Cuk 高效率 转换器 供电

    上传时间: 2013-11-17

    上传用户:liuchee

  • 模块电源功能性参数指标及测试方法

      模块电源的电气性能是通过一系列测试来呈现的,下列为一般的功能性测试项目,详细说明如下: 电源调整率(Line Regulation) 负载调整率(Load Regulation) 综合调整率(Conmine Regulation) 输出涟波及杂讯(Ripple & Noise) 输入功率及效率(Input Power, Efficiency) 动态负载或暂态负载(Dynamic or Transient Response) 起动(Set-Up)及保持(Hold-Up)时间 常规功能(Functions)测试 1. 电源调整率   电源调整率的定义为电源供应器于输入电压变化时提供其稳定输出电压的能力。测试步骤如下:于待测电源供应器以正常输入电压及负载状况下热机稳定后,分别于低输入电压(Min),正常输入电压(Normal),及高输入电压(Max)下测量并记录其输出电压值。 电源调整率通常以一正常之固定负载(Nominal Load)下,由输入电压变化所造成其输出电压偏差率(deviation)的百分比,如下列公式所示:   [Vo(max)-Vo(min)] / Vo(normal) 2. 负载调整率   负载调整率的定义为开关电源于输出负载电流变化时,提供其稳定输出电压的能力。测试步骤如下:于待测电源供应器以正常输入电压及负载状况下热机稳定后,测量正常负载下之输出电压值,再分别于轻载(Min)、重载(Max)负载下,测量并记录其输出电压值(分别为Vo(max)与Vo(min)),负载调整率通常以正常之固定输入电压下,由负载电流变化所造成其输出电压偏差率的百分比,如下列公式所示:   [Vo(max)-Vo(min)] / Vo(normal)    3. 综合调整率   综合调整率的定义为电源供应器于输入电压与输出负载电流变化时,提供其稳定输出电压的能力。这是电源调整率与负载调整率的综合,此项测试系为上述电源调整率与负载调整率的综合,可提供对电源供应器于改变输入电压与负载状况下更正确的性能验证。 综合调整率用下列方式表示:于输入电压与输出负载电流变化下,其输出电压之偏差量须于规定之上下限电压范围内(即输出电压之上下限绝对值以内)或某一百分比界限内。 4. 输出杂讯   输出杂讯(PARD)系指于输入电压与输出负载电流均不变的情况下,其平均直流输出电压上的周期性与随机性偏差量的电压值。输出杂讯是表示在经过稳压及滤波后的直流输出电压上所有不需要的交流和噪声部份(包含低频之50/60Hz电源倍频信号、高于20 KHz之高频切换信号及其谐波,再与其它之随机性信号所组成)),通常以mVp-p峰对峰值电压为单位来表示。   一般的开关电源的规格均以输出直流输出电压的1%以内为输出杂讯之规格,其频宽为20Hz到20MHz。电源实际工作时最恶劣的状况(如输出负载电流最大、输入电源电压最低等),若电源供应器在恶劣环境状况下,其输出直流电压加上杂讯后之输出瞬时电压,仍能够维持稳定的输出电压不超过输出高低电压界限情形,否则将可能会导致电源电压超过或低于逻辑电路(如TTL电路)之承受电源电压而误动作,进一步造成死机现象。   同时测量电路必须有良好的隔离处理及阻抗匹配,为避免导线上产生不必要的干扰、振铃和驻波,一般都采用双同轴电缆并以50Ω于其端点上,并使用差动式量测方法(可避免地回路之杂讯电流),来获得正确的测量结果。 5. 输入功率与效率   电源供应器的输入功率之定义为以下之公式:   True Power = Pav(watt) = Vrms x Arms x Power Factor 即为对一周期内其输入电压与电流乘积之积分值,需注意的是Watt≠VrmsArms而是Watt=VrmsArmsxP.F.,其中P.F.为功率因素(Power Factor),通常无功率因素校正电路电源供应器的功率因素在0.6~0.7左右,其功率因素为1~0之间。   电源供应器的效率之定义为为输出直流功率之总和与输入功率之比值。效率提供对电源供应器正确工作的验证,若效率超过规定范围,即表示设计或零件材料上有问题,效率太低时会导致散热增加而影响其使用寿命。 6. 动态负载或暂态负载   一个定电压输出的电源,于设计中具备反馈控制回路,能够将其输出电压连续不断地维持稳定的输出电压。由于实际上反馈控制回路有一定的频宽,因此限制了电源供应器对负载电流变化时的反应。若控制回路输入与输出之相移于增益(Unity Gain)为1时,超过180度,则电源供应器之输出便会呈现不稳定、失控或振荡之现象。实际上,电源供应器工作时的负载电流也是动态变化的,而不是始终维持不变(例如硬盘、软驱、CPU或RAM动作等),因此动态负载测试对电源供应器而言是极为重要的。可编程序电子负载可用来模拟电源供应器实际工作时最恶劣的负载情况,如负载电流迅速上升、下降之斜率、周期等,若电源供应器在恶劣负载状况下,仍能够维持稳定的输出电压不产生过高激(Overshoot)或过低(Undershoot)情形,否则会导致电源之输出电压超过负载组件(如TTL电路其输出瞬时电压应介于4.75V至5.25V之间,才不致引起TTL逻辑电路之误动作)之承受电源电压而误动作,进一步造成死机现象。 7. 启动时间与保持时间   启动时间为电源供应器从输入接上电源起到其输出电压上升到稳压范围内为止的时间,以一输出为5V的电源供应器为例,启动时间为从电源开机起到输出电压达到4.75V为止的时间。   保持时间为电源供应器从输入切断电源起到其输出电压下降到稳压范围外为止的时间,以一输出为5V的电源供应器为例,保持时间为从关机起到输出电压低于4.75V为止的时间,一般值为17ms或20ms以上,以避免电力公司供电中于少了半周或一周之状况下而受影响。    8. 其它 在电源具备一些特定保护功能的前提下,还需要进行保护功能测试,如过电压保护(OVP)测试、短路保护测试、过功保护等

    标签: 模块电源 参数 指标 测试方法

    上传时间: 2013-10-22

    上传用户:zouxinwang

  • 基于2SD315AI的静电除尘用高频高压电源研制

    研制了一种新型的用于除尘系统的大功率高频高压供电电源。给出了电源主电路和控制电路的设计过程,着重研究了基于2SD315AI模块的驱动电路设计。电源的主电路由整流电路、逆变电路、高频变压器和高压整流电路组成;控制电路由主控芯片、升压调理电路、驱动电路和故障反馈电路组成。实验结果表明文中设计的控制电路及驱动电路工作稳定,性能较好能够满足大功率高频高压除尘电源的需求。

    标签: 2SD 315 SD AI

    上传时间: 2014-01-15

    上传用户:古谷仁美

  • 集成信号和电源隔离的锂离子电池组监控器

    AD7280A菊花链从它监控的电池单元获得电源。ADuM5401集成一个DC/DC转换器,用于向ADuM1201的高压端供电,向AD7280A SPI接口提供VDRIVE电源,以及向AD7280A菊花链电路提供关断信号。如果BMS低压端的+5 V电源被拉低,则隔离器和AD7280A菊花链关断。同样,如果来自BMC的PD信号变为低电平,通过ADG849开关路由的ADuM5401低压电源将被拉低,这也会使隔离器和AD7280A菊花链发生硬件关断。

    标签: 集成信号 电源隔离 锂离子电池组 监控器

    上传时间: 2013-12-14

    上传用户:D&L37