虫虫首页|资源下载|资源专辑|精品软件
登录|注册

电流电压测量

  • 单片机应用系统抗干扰技术

    单片机应用系统抗干扰技术:第1章 电磁干扰控制基础. 1.1 电磁干扰的基本概念1 1.1.1 噪声与干扰1 1.1.2 电磁干扰的形成因素2 1.1.3 干扰的分类2 1.2 电磁兼容性3 1.2.1 电磁兼容性定义3 1.2.2 电磁兼容性设计3 1.2.3 电磁兼容性常用术语4 1.2.4 电磁兼容性标准6 1.3 差模干扰和共模干扰8 1.3.1 差模干扰8 1.3.2 共模干扰9 1.4 电磁耦合的等效模型9 1.4.1 集中参数模型9 1.4.2 分布参数模型10 1.4.3 电磁波辐射模型11 1.5 电磁干扰的耦合途径14 1.5.1 传导耦合14 1.5.2 感应耦合(近场耦合)15 .1.5.3 电磁辐射耦合(远场耦合)15 1.6 单片机应用系统电磁干扰控制的一般方法16 第2章 数字信号耦合与传输机理 2.1 数字信号与电磁干扰18 2.1.1 数字信号的开关速度与频谱18 2.1.2 开关暂态电源尖峰电流噪声22 2.1.3 开关暂态接地反冲噪声24 2.1.4 高速数字电路的EMI特点25 2.2 导线阻抗与线间耦合27 2.2.1 导体交直流电阻的计算27 2.2.2 导体电感量的计算29 2.2.3 导体电容量的计算31 2.2.4 电感耦合分析32 2.2.5 电容耦合分析35 2.3 信号的长线传输36 2.3.1 长线传输过程的数学描述36 2.3.2 均匀传输线特性40 2.3.3 传输线特性阻抗计算42 2.3.4 传输线特性阻抗的重复性与阻抗匹配44 2.4 数字信号传输过程中的畸变45 2.4.1 信号传输的入射畸变45 2.4.2 信号传输的反射畸变46 2.5 信号传输畸变的抑制措施49 2.5.1 最大传输线长度的计算49 2.5.2 端点的阻抗匹配50 2.6 数字信号的辐射52 2.6.1 差模辐射52 2.6.2 共模辐射55 2.6.3 差模和共模辐射比较57 第3章 常用元件的可靠性能与选择 3.1 元件的选择与降额设计59 3.1.1 元件的选择准则59 3.1.2 元件的降额设计59 3.2 电阻器60 3.2.1 电阻器的等效电路60 3.2.2 电阻器的内部噪声60 3.2.3 电阻器的温度特性61 3.2.4 电阻器的分类与主要参数62 3.2.5 电阻器的正确选用66 3.3 电容器67 3.3.1 电容器的等效电路67 3.3.2 电容器的种类与型号68 3.3.3 电容器的标志方法70 3.3.4 电容器引脚的电感量71 3.3.5 电容器的正确选用71 3.3.6 电容器使用注意事项73 3.4 电感器73 3.4.1 电感器的等效电路74 3.4.2 电感器使用的注意事项74 3.5 数字集成电路的抗干扰性能75 3.5.1 噪声容限与抗干扰能力75 3.5.2 施密特集成电路的噪声容限77 3.5.3 TTL数字集成电路的抗干扰性能78 3.5.4 CMOS数字集成电路的抗干扰性能79 3.5.5 CMOS电路使用中注意事项80 3.5.6 集成门电路系列型号81 3.6 高速CMOS 54/74HC系列接口设计83 3.6.1 54/74HC 系列芯片特点83 3.6.2 74HC与TTL接口85 3.6.3 74HC与单片机接口85 3.7 元器件的装配工艺对可靠性的影响86 第4章 电磁干扰硬件控制技术 4.1 屏蔽技术88 4.1.1 电场屏蔽88 4.1.2 磁场屏蔽89 4.1.3 电磁场屏蔽91 4.1.4 屏蔽损耗的计算92 4.1.5 屏蔽体屏蔽效能的计算99 4.1.6 屏蔽箱的设计100 4.1.7 电磁泄漏的抑制措施102 4.1.8 电缆屏蔽层的屏蔽原理108 4.1.9 屏蔽与接地113 4.1.10 屏蔽设计要点113 4.2 接地技术114 4.2.1 概述114 4.2.2 安全接地115 4.2.3 工作接地117 4.2.4 接地系统的布局119 4.2.5 接地装置和接地电阻120 4.2.6 地环路问题121 4.2.7 浮地方式122 4.2.8 电缆屏蔽层接地123 4.3 滤波技术126 4.3.1 滤波器概述127 4.3.2 无源滤波器130 4.3.3 有源滤波器138 4.3.4 铁氧体抗干扰磁珠143 4.3.5 贯通滤波器146 4.3.6 电缆线滤波连接器149 4.3.7 PCB板滤波器件154 4.4 隔离技术155 4.4.1 光电隔离156 4.4.2 继电器隔离160 4.4.3 变压器隔离 161 4.4.4 布线隔离161 4.4.5 共模扼流圈162 4.5 电路平衡结构164 4.5.1 双绞线在平衡电路中的使用164 4.5.2 同轴电缆的平衡结构165 4.5.3 差分放大器165 4.6 双绞线的抗干扰原理及应用166 4.6.1 双绞线的抗干扰原理166 4.6.2 双绞线的应用168 4.7 信号线间的串扰及抑制169 4.7.1 线间串扰分析169 4.7.2 线间串扰的抑制173 4.8 信号线的选择与敷设174 4.8.1 信号线型式的选择174 4.8.2 信号线截面的选择175 4.8.3 单股导线的阻抗分析175 4.8.4 信号线的敷设176 4.9 漏电干扰的防止措施177 4.10 抑制数字信号噪声常用硬件措施177 4.10.1 数字信号负传输方式178 4.10.2 提高数字信号的电压等级178 4.10.3 数字输入信号的RC阻容滤波179 4.10.4 提高输入端的门限电压181 4.10.5 输入开关触点抖动干扰的抑制方法181 4.10.6 提高器件的驱动能力184 4.11 静电放电干扰及其抑制184 第5章 主机单元配置与抗干扰设计 5.1 单片机主机单元组成特点186 5.1.1 80C51最小应用系统186 5.1.2 低功耗单片机最小应用系统187 5.2 总线的可靠性设计191 5.2.1 总线驱动器191 5.2.2 总线的负载平衡192 5.2.3 总线上拉电阻的配置192 5.3 芯片配置与抗干扰193 5.3.1去耦电容配置194 5.3.2 数字输入端的噪声抑制194 5.3.3 数字电路不用端的处理195 5.3.4 存储器的布线196 5.4 译码电路的可靠性分析197 5.4.1 过渡干扰与译码选通197 5.4.2 译码方式与抗干扰200 5.5 时钟电路配置200 5.6 复位电路设计201 5.6.1 复位电路RC参数的选择201 5.6.2 复位电路的可靠性与抗干扰分析202 5.6.3 I/O接口芯片的延时复位205 5.7 单片机系统的中断保护问题205 5.7.1 80C51单片机的中断机构205 5.7.2 常用的几种中断保护措施205 5.8 RAM数据掉电保护207 5.8.1 片内RAM数据保护207 5.8.2 利用双片选的外RAM数据保护207 5.8.3 利用DS1210实现外RAM数据保护208 5.8.4 2 KB非易失性随机存储器DS1220AB/AD211 5.9 看门狗技术215 5.9.1 由单稳态电路实现看门狗电路216 5.9.2 利用单片机片内定时器实现软件看门狗217 5.9.3 软硬件结合的看门狗技术219 5.9.4 单片机内配置看门狗电路221 5.10 微处理器监控器223 5.10.1 微处理器监控器MAX703~709/813L223 5.10.2 微处理器监控器MAX791227 5.10.3 微处理器监控器MAX807231 5.10.4 微处理器监控器MAX690A/MAX692A234 5.10.5 微处理器监控器MAX691A/MAX693A238 5.10.6 带备份电池的微处理器监控器MAX1691242 5.11 串行E2PROM X25045245 第6章 测量单元配置与抗干扰设计 6.1 概述255 6.2 模拟信号放大器256 6.2.1 集成运算放大器256 6.2.2 测量放大器组成原理260 6.2.3 单片集成测量放大器AD521263 6.2.4 单片集成测量放大器AD522265 6.2.5 单片集成测量放大器AD526266 6.2.6 单片集成测量放大器AD620270 6.2.7 单片集成测量放大器AD623274 6.2.8 单片集成测量放大器AD624276 6.2.9 单片集成测量放大器AD625278 6.2.10 单片集成测量放大器AD626281 6.3 电压/电流变换器(V/I)283 6.3.1 V/I变换电路..283 6.3.2 集成V/I变换器XTR101284 6.3.3 集成V/I变换器XTR110289 6.3.4 集成V/I变换器AD693292 6.3.5 集成V/I变换器AD694299 6.4 电流/电压变换器(I/V)302 6.4.1 I/V变换电路302 6.4.2 RCV420型I/V变换器303 6.5 具有放大、滤波、激励功能的模块2B30/2B31305 6.6 模拟信号隔离放大器313 6.6.1 隔离放大器ISO100313 6.6.2 隔离放大器ISO120316 6.6.3 隔离放大器ISO122319 6.6.4 隔离放大器ISO130323 6.6.5 隔离放大器ISO212P326 6.6.6 由两片VFC320组成的隔离放大器329 6.6.7 由两光耦组成的实用线性隔离放大器333 6.7 数字电位器及其应用336 6.7.1 非易失性数字电位器x9221336 6.7.2 非易失性数字电位器x9241343 6.8 传感器供电电源的配置及抗干扰346 6.8.1 传感器供电电源的扰动补偿347 6.8.2 单片集成精密电压芯片349 6.8.3 A/D转换器芯片提供基准电压350 6.9 测量单元噪声抑制措施351 6.9.1 外部噪声源的干扰及其抑制351 6.9.2 输入信号串模干扰的抑制352 6.9.3 输入信号共模干扰的抑制353 6.9.4 仪器仪表的接地噪声355 第7章 D/A、A/D单元配置与抗干扰设计 7.1 D/A、A/D转换器的干扰源357 7.2 D/A转换原理及抗干扰分析358 7.2.1 T型电阻D/A转换器359 7.2.2 基准电源精度要求361 7.2.3 D/A转换器的尖峰干扰362 7.3 典型D/A转换器与单片机接口363 7.3.1 并行12位D/A转换器AD667363 7.3.2 串行12位D/A转换器MAX5154370 7.4 D/A转换器与单片机的光电接口电路377 7.5 A/D转换器原理与抗干扰性能378 7.5.1 逐次比较式ADC原理378 7.5.2 余数反馈比较式ADC原理378 7.5.3 双积分ADC原理380 7.5.4 V/F ADC原理382 7.5.5 ∑Δ式ADC原理384 7.6 典型A/D转换器与单片机接口387 7.6.18 位并行逐次比较式MAX 118387 7.6.28 通道12位A/D转换器MAX 197394 7.6.3 双积分式A/D转换器5G14433399 7.6.4 V/F转换器AD 652在A/D转换器中的应用403 7.7 采样保持电路与抗干扰措施408 7.8 多路模拟开关与抗干扰措施412 7.8.1 CD4051412 7.8.2 AD7501413 7.8.3 多路开关配置与抗干扰技术413 7.9 D/A、A/D转换器的电源、接地与布线416 7.10 精密基准电压电路与噪声抑制416 7.10.1 基准电压电路原理417 7.10.2 引脚可编程精密基准电压源AD584418 7.10.3 埋入式齐纳二极管基准AD588420 7.10.4 低漂移电压基准MAX676/MAX677/MAX678422 7.10.5 低功率低漂移电压基准MAX873/MAX875/MAX876424 7.10.6 MC1403/MC1403A、MC1503精密电压基准电路430 第8章 功率接口与抗干扰设计 8.1 功率驱动元件432 8.1.1 74系列功率集成电路432 8.1.2 75系列功率集成电路433 8.1.3 MOC系列光耦合过零触发双向晶闸管驱动器435 8.2 输出控制功率接口电路438 8.2.1 继电器输出驱动接口438 8.2.2 继电器—接触器输出驱动电路439 8.2.3 光电耦合器—晶闸管输出驱动电路439 8.2.4 脉冲变压器—晶闸管输出电路440 8.2.5 单片机与大功率单相负载的接口电路441 8.2.6 单片机与大功率三相负载间的接口电路442 8.3 感性负载电路噪声的抑制442 8.3.1 交直流感性负载瞬变噪声的抑制方法442 8.3.2 晶闸管过零触发的几种形式445 8.3.3 利用晶闸管抑制感性负载的瞬变噪声447 8.4 晶闸管变流装置的干扰和抑制措施448 8.4.1 晶闸管变流装置电气干扰分析448 8.4.2 晶闸管变流装置的抗干扰措施449 8.5 固态继电器451 8.5.1 固态继电器的原理和结构451 8.5.2 主要参数与选用452 8.5.3 交流固态继电器的使用454 第9章 人机对话单元配置与抗干扰设计 9.1 键盘接口抗干扰问题456 9.2 LED显示器的构造与特点458 9.3 LED的驱动方式459 9.3.1 采用限流电阻的驱动方式459 9.3.2 采用LM317的驱动方式460 9.3.3 串联二极管压降驱动方式462 9.4 典型键盘/显示器接口芯片与单片机接口463 9.4.1 8位LED驱动器ICM 7218B463 9.4.2 串行LED显示驱动器MAX 7219468 9.4.3 并行键盘/显示器专用芯片8279482 9.4.4 串行键盘/显示器专用芯片HD 7279A492 9.5 LED显示接口的抗干扰措施502 9.5.1 LED静态显示接口的抗干扰502 9.5.2 LED动态显示接口的抗干扰506 9.6 打印机接口与抗干扰技术508 9.6.1 并行打印机标准接口信号508 9.6.2 打印机与单片机接口电路509 9.6.3 打印机电磁干扰的防护设计510 9.6.4 提高数据传输可靠性的措施512 第10章 供电电源的配置与抗干扰设计 10.1 电源干扰问题概述513 10.1.1 电源干扰的类型513 10.1.2 电源干扰的耦合途径514 10.1.3 电源的共模和差模干扰515 10.1.4 电源抗干扰的基本方法516 10.2 EMI电源滤波器517 10.2.1 实用低通电容滤波器518 10.2.2 双绕组扼流圈的应用518 10.3 EMI滤波器模块519 10.3.1 滤波器模块基础知识519 10.3.2 电源滤波器模块521 10.3.3 防雷滤波器模块531 10.3.4 脉冲群抑制模块532 10.4 瞬变干扰吸收器件532 10.4.1 金属氧化物压敏电阻(MOV)533 10.4.2 瞬变电压抑制器(TVS)537 10.5 电源变压器的屏蔽与隔离552 10.6 交流电源的供电抗干扰方案553 10.6.1 交流电源配电方式553 10.6.2 交流电源抗干扰综合方案555 10.7 供电直流侧抑制干扰措施555 10.7.1 整流电路的高频滤波555 10.7.2 串联型直流稳压电源配置与抗干扰556 10.7.3 集成稳压器使用中的保护557 10.8 开关电源干扰的抑制措施559 10.8.1 开关噪声的分类559 10.8.2 开关电源噪声的抑制措施560 10.9 微机用不间断电源UPS561 10.10 采用晶闸管无触点开关消除瞬态干扰设计方案564 第11章 印制电路板的抗干扰设计 11.1 印制电路板用覆铜板566 11.1.1 覆铜板材料566 11.1.2 覆铜板分类568 11.1.3 覆铜板的标准与电性能571 11.1.4 覆铜板的主要特点和应用583 11.2 印制板布线设计基础585 11.2.1 印制板导线的阻抗计算585 11.2.2 PCB布线结构和特性阻抗计算587 11.2.3 信号在印制板上的传播速度589 11.3 地线和电源线的布线设计590 11.3.1 降低接地阻抗的设计590 11.3.2 减小电源线阻抗的方法591 11.4 信号线的布线原则592 11.4.1 信号传输线的尺寸控制592 11.4.2 线间串扰控制592 11.4.3 辐射干扰的抑制593 11.4.4 反射干扰的抑制594 11.4.5 微机自动布线注意问题594 11.5 配置去耦电容的方法594 11.5.1 电源去耦595 11.5.2 集成芯片去耦595 11.6 芯片的选用与器件布局596 11.6.1 芯片选用指南596 11.6.2 器件的布局597 11.6.3 时钟电路的布置598 11.7 多层印制电路板599 11.7.1 多层印制板的结构与特点599 11.7.2 多层印制板的布局方案600 11.7.3 20H原则605 11.8 印制电路板的安装和板间配线606 第12章 软件抗干扰原理与方法 12.1 概述607 12.1.1 测控系统软件的基本要求607 12.1.2 软件抗干扰一般方法607 12.2 指令冗余技术608 12.2.1 NOP的使用609 12.2.2 重要指令冗余609 12.3 软件陷阱技术609 12.3.1 软件陷阱609 12.3.2 软件陷阱的安排610 12.4 故障自动恢复处理程序613 12.4.1 上电标志设定614 12.4.2 RAM中数据冗余保护与纠错616 12.4.3 软件复位与中断激活标志617 12.4.4 程序失控后恢复运行的方法618 12.5 数字滤波619 12.5.1 程序判断滤波法620 12.5.2 中位值滤波法620 12.5.3 算术平均滤波法621 12.5.4 递推平均滤波法623 12.5.5 防脉冲干扰平均值滤波法624 12.5.6 一阶滞后滤波法626 12.6 干扰避开法627 12.7 开关量输入/输出软件抗干扰设计629 12.7.1 开关量输入软件抗干扰措施629 12.7.2 开关量输出软件抗干扰措施629 12.8 编写软件的其他注意事项630 附录 电磁兼容器件选购信息632

    标签: 单片机 应用系统 抗干扰技术

    上传时间: 2013-10-20

    上传用户:xdqm

  • 基于EKF的异步电机直接转矩控制系统

    为了提高直接转矩控制(DTC)系统定子磁链估计精度,降低电流、电压测量的随机误差,提出了一种基于扩展卡尔曼滤波(EKF)实现异步电机转子位置和速度估计的方法。扩展卡尔曼滤波器是建立在基于旋转坐标系下由定子电流、电压、转子转速和其它电机参量所构成的电机模型上,将定子电流、定子磁链、转速和转子角位置作为状态变量,定子电压为输入变量,定子电流为输出变量,通过对磁链和转速的闭环控制提高定子磁链的估计精度,实现了异步电机的无速度传感器直接转矩控制策略,仿真结果验证了该方法的可行性,提高了直接转矩的控制性能。 Abstract:  In order to improve the Direct Torque Control(DTC) system of stator flux estimation accuracy and reduce the current, voltage measurement of random error, a novel method to estimate the speed and rotor position of asynchronous motor based on extended Kalman filter was introduced. EKF was based on d-p axis motor and other motor parameters (state vector: stator current, stator flux linkage, rotor angular speed and position; input: stator voltage; output: staror current). EKF was designed for stator flux and rotor speed estimation in close-loop control. It can improve the estimated accuracy of stator flux. It is possible to estimate the speed and rotor position and implement asynchronous motor drives without position and speed sensors. The simulation results show it is efficient and improves the control performance.

    标签: EKF 异步电机 直接转矩 控制系统

    上传时间: 2015-01-02

    上传用户:qingdou

  • 电流表电压表

    基于单片机设计的数码电流电压表

    标签: 电流表 电压表

    上传时间: 2013-10-20

    上传用户:forzalife

  • 利用2400系列数字源表对二极管生产进行测试

      这个应用笔记说明如何利用可以作为电流/电压源并测量电流和电压的单一仪器来配置生产测试系统。2400系列数字源表就可以提供这种能力,它包括2400型数字源表、2410型高压数字源表以及2420型大电流数字源表。本文还对二极管三个主要参数测试进行了说明,并对测试系统和IEEE-488总线操作进行了介绍。

    标签: 2400 数字源表 二极管 测试

    上传时间: 2013-11-23

    上传用户:eastimage

  • 本系统以直流电流源为核心

    本系统以直流电流源为核心,AT89S52单片机为主控制器,通过键盘来设置直流电源的输出电流,设置步进等级可达1mA,并可由数码管显示实际输出电流值和电流设定值。本系统由单片机程控输出数字信号,经过D/A转换器(AD7543)输出模拟量,再经过运算放大器隔离放大,控制输出功率管的基极,随着功率管基极电压的变化而输出不同的电流。单片机系统还兼顾对恒流源进行实时监控,输出电流经过电流/电压转变后,通过A/D转换芯片,实时把模拟量转化为数据量,再经单片机分析处理, 通过数据形式的反馈环节,使电流更加稳定,这样构成稳定的压控电流源。实际测试结果表明,本系统输出电流稳定,不随负载和环境温度变化,并具有很高的精度,输出电流误差范围±5mA,输出电流可在20mA~2000mA范围内任意设定,因而可实际应用于需要高稳定度小功率恒流源的领域。

    标签: 直流电流源 核心

    上传时间: 2013-12-18

    上传用户:330402686

  • 单片机应用系统中交流电压测量的一种算法

    通过算法求出交流电压值,减少硬件电路的复杂程度。采样精度准确。

    标签: 单片机 交流电压 应用系统 测量 算法

    上传时间: 2017-11-08

    上传用户:121212word

  • 三相电子电能表检定装置

    基本误差 在相关国标、规程规定的参比条件下,输出电流为50mA~120A装置的最大允许误差(含标准表)小于0.01%,输出电流为1mA~50mA装置的最大允许误差(含标准表)小于0.015%。 可实现三只三相电能表的三相四线及三相三线的误差测量;可测试无功电能基本误差。 1.2.3.2 测量重复性 装置的测量重复性用实验标准差表征,在进行不少于10次的重复测量,其测量结果的标准偏差估计值s不超过0.001%。 1.2.3.3  输出电量 1.2.3.3.1 电压电流量程 输出电压范围:3×(57.7V~380V); 每档电压输出瞬间及相位切换时不允许有尖峰。每档电压输出上限达120%Un。  输出电流范围:3×(0.001A~100A); 输出电流范围上限要求达到120A。每档电流输出瞬间及相位切换时不允许有尖峰。每档电流输出上限达120%In。 1.2.3.3.2 输出负载容量 三表位:电压输出:每相≥150VA         电流输出:   每相≥300VA 1.2.3.3.3 输出电量调节 (1)  电压、电流调节: 调节范围:0%~120%                   调节细度:优于0.005%。 (2)  相位调节: 调节范围:0°~360°                 调节细度:优于0.01°。 (3) 频率调节: 调节范围:45Hz~65Hz                 调节细度:优于0.001Hz。 1.2.3.3.4 输出功率稳定度:<0.005% / 3min . 稳定度按JJG597的5.2.3.13方法计算。 1.2.3.3.5 输出电压电流失真度 装置输出电压电流失真度范围:小于0.1%。 1.2.3.3.6起动电流:装置具有起动电流调整、测量功能,能输出0.5mA的起动电流。 起动电流的测量误差≤ 5%,起动功率的测量误差 ≤ 10%。 1.2.3.3.7三相电量对称性 任一相(或线)电压和相(或线)电压平均值之差不大于±0.1%;各相电流与其平均值之差不大于±0.2%;任一相电压与对应相电流间的相位角之差不大于0.5°;任一相电压(电流)与另一相电压(电流)间相位角与120°之差不大于0.5°。 1.2.3.4 多路隔离输出的装置各路输出负载影响应符合JJG597—2005中 3.8条的规定。 1.2.3.5 确定同名端钮间电位差应符合JJG597—2005中3.9条的规定。 1.2.3.6 多路输出的一致性应符合JJG597—2005中3.7条的规定。 1.2.3.7 监视示值的误差 监视仪表应有足够的测量范围,电压示值误差限为±0.2%,电流、功率示值误差限为±0.2%,相位示值误差限为±0.3°,频率示值误差限为±0.1%,启动电流和启动功率的监视示值误差不超过5%(启动电流为1mA时的监视示值误差也不应超过5%)。各监视示值的分辨力应不超过其对应误差限的1/5。 1.2.3.8 具有消除自激的功能。可自动消除开机或关机时产生的尖脉冲。 1.2.3.9 装置的磁场 由装置产生的在被检表位置的磁感应强度不大于下列数值: I≤10A时,B≤0.0025mT; I=200A时,B≤0.05mT;10A到200A之间的磁感应强度极限值可按内插法求得。 1.2.3.10  电磁兼容性  (1)电磁骚扰的抗扰度 装置的设计能保证在传导和辐射的电磁骚扰以及静电放电的影响下不损坏或不受实质性影响(如元器件损毁、控制系统死机、精度出现变化等影响正常检定工作的现象),骚扰量为静电放电、射频电磁场。 (2)无线电干扰抑制 装置不发生能干扰其他设备的传导和辐射噪声。 1.2.3.11 稳定性变差 (1)短期稳定性变差 装置基本误差合格的同时,在15min内的基本误差最大变化值(连续测量7h),不大于装置对应最大允许误差的20%。 (2)检定周期内变差 检定周期内装置基本误差合格的同时,其最大变化值,不大于0.01%。 1.2.3.12 安全 装置的绝缘强度试验要求和与安全有关的结构要求符合GB 4793.1的规定。 1.2.3.13 脉冲输出 同时检测三路被检脉冲:显示当前误差平均误差和标准偏差;同时检测的被检脉冲的常数、工作方式和脉冲个数,可完全不同;误差测量所需要的输入参数的位数,应能覆盖目前各种标准表和的检测需要。对每一表位应有高频、低频脉冲信号的BNC接收端口,能接收≤600kHz的有/无源脉冲(5-30V脉冲幅值)。 1.2.3.14供电电源 供电电源在3×220V/380V10,50Hz2Hz装置正常工作。

    标签: 三相 电子电能表 检定装置

    上传时间: 2021-06-15

    上传用户:li091122

  • 30路PT100温度数据自动采集硬件+单片机软件+PC上位机软件系统设计

          30路PT100温度数据自动采集硬件+单片机软件+PC上位机软件系统设计,多年前做的小项目,硬件已实现包括PROTEL 99SE 设计的硬件原理图+PCB文件,W77E58单片机软件,EPM7128S CPLD逻辑,VB设计的上位机数据采集界面软件,机械屏蔽外壳。可作为你产品设计的参考。自动测温系统设计目录1、             设计目的由于人工用万用表测量不仅浪费时间与人力,而且也只是得到传感器的电阻值,不能直观的反映出磁体的温度值,0.45T系统软件开发及临床的应用也给测量带来了不变,今采用磁体温度自动测量系统,可以完全克服这些矛盾,在系统成像扫描后可以开启磁体温度自动测量系统通过PC串口随时读取30路磁体温度数据。2、             设计方案1》 硬件方案:采用通过主机的串口来读取这30路温度数据,主机与MCU的通信采用RS232的方式,主机给MCU命令,MCU在与CPLD之间在进行逻辑控制,通过CPLD来控制这30路电流型模拟开关(或者继电器)的选通,来定时(如200 ms)一路一路的来选通温度传感器,然后在通过变送器进行电阻到电流电压的转换,通过12位A/D转换器,将温度模拟信号转化为数字信号,将这些数字信号送入MCU进行数据处理,线上电阻补偿等,最后通过串口将MCU处理后的数据送入HOST显示出来。    

    标签: pt100 温度数据自动采集 单片机

    上传时间: 2022-05-17

    上传用户:trh505

  • 基于TDCGP2的高精度脉冲激光测距系统研究

    论文通过对高精度脉冲式激光测距系统的研究,并在参照课题技术指标的基础上,旨在提供一种高精度脉冲式激光测距系统的解决方案,并对脉冲式激光测距仪系统设计中所涉及的脉冲读取与放大电路、时刻鉴别、时间间隔测量等关键技术进行了深入的研究和探讨。论文利用电流-电压转换法对脉冲信号进行读取,并使用了可控增益放大技术,使得放大后的脉冲信号能在限定幅值范围内变化,减小了时刻鉴别中由于脉冲幅值波动所引起的漂移误差;在时刻鉴别中,采用了预鉴别恒定比值鉴别法使漂移误差进一步减小。时间间隔测量是论文的核心部分,基于TDC-GP2的时间间隔测量设计使系统的时差测量精度达到72ps,高精度的时差测量为系统测距精度提供了可靠保障。关键词:脉冲激光测距;可控增益放大;蜂值检测:时刻鉴别:TDC-GP2

    标签: 脉冲激光测距

    上传时间: 2022-06-20

    上传用户:pagedown

  • 怎样用万用电表检测集成电路

    怎样用万用电表检测集成电路作者:金正,郑雯,董福英关键词:复用电表 应用 集成电路虽说集成电路代换有方,但拆卸毕竟较麻烦。因此,在拆之前应确切判断集成电路是否确实已损坏及损坏的程度,避免盲目拆卸。本文介绍了仅用万用表作为检测工具的不在路和在路检测集成电路的方法和注意事项。文中所述在路检测的四种方法(直流电阻、电压、交流电压和总电流的测量)是业余维修中实用且常用的检测法。这里,也希望大家提供其他实用的(集成电路和元器件)判别检测经验。

    标签: 万用电表 集成电路

    上传时间: 2022-07-03

    上传用户:slq1234567890