目前部分杂志上对电流采样电路分析不准确,此文通过能量平衡的方法计算出分压电阻与充电角δ之间的函数关系,并应用函数无限接近的方法计算出δ值,从而得出A/D采用的电压。
标签: 电流互感器
上传时间: 2022-04-14
上传用户:
产品型号:VK3603 产品品牌:VINKA/永嘉微电 封装形式:ESOP8 产品年份:新年份 联 系 人:陈锐鸿 Q Q:361 888 5898 联系手机:188 2466 2436(信) 概述: VK3603具有3个触摸按键,可用来检测外部触摸按键上人手的触摸动作。该芯片具有较 高的集成度,仅需极少的外部组件便可实现触摸按键的检测。 提供了3路直接输出功能。芯片内部采用特殊的集成电路,具有高电源电压抑制比,可 减少按键检测错误的发生,此特性保证在不利环境条件的应用中芯片仍具有很高的可靠性。 此触摸芯片具有自动校准功能,低待机电流,抗电压波动等特性,为各种触摸按键+IO 输出的应用提供了一种简单而又有效的实现方法。 特点: • 工作电压 2.4-5.5V • 待机电流7uA/3.3V,14uA/5V • 上电复位功能(POR) • 低压复位功能(LVR) • 触摸输出响应时间: 工作模式 48mS 待机模式160mS • CMOS输出,低电平有效,支持多键 • 有效键最长输出16S • 无触摸4S自动校准 • 专用脚接对地电容调节灵敏度(1-47nF) • 各触摸通道单独接对地小电容微调灵敏度(0-50pF) • 上电0.25S内为稳定时间,禁止触摸 • 封装SOP8-EP(150mil)(4.9mm x 3.9mm PP=1.27mm) 产品型号:VK3601 产品品牌:VINKA/永嘉微电 封装形式:SOT23-6 产品年份:新年份 联 系 人:陈锐鸿 概述: VK3601 是一款单触摸通道带1个逻辑控制输出的电容式触摸芯片。 特点和优势: • 可通过触摸实现各种逻辑功能控制,操作简单、方便实用 • 可在有介质(如玻璃、亚克力、塑料、陶瓷等)隔离保护的情况下实现触摸功能,安全性高。 • 应用电压范围宽,可在 2.4~5.5V 之间任意选择 • 应用电路简单,外围器件少,加工方便,成本低 • 低待机工作电流(没有负载) @VDD=3.3V,典型值 4uA,最大值 8uA。@VDD=5.0V,典型值 8uA,最大值 16Ua • 专用管脚接外部电容(1nF-47nF)调灵敏度 • 抗电源干扰及手机干扰特性好。EFT 可以达到±2KV 以上;近距离、多角度手机干扰情况下, 触摸响应灵敏度及可靠性不受影响。 • 上电后的初始输出状态由上电前 AHLB 的输入状态决定。AHLB 管脚接 VDD(高电平)或者悬空上电,上电后SO 输出高电平;AHLB 管脚接 GND(低电平)上电,上电后SO输出低电平。•按住 TI,对应 SO的输出状态翻转;松开后回复初始状态 • 上电后约为0.25秒的稳定时间,此期间内不要触摸检测点,此时所有功能都被禁止 • 自动校准功能刚上电的4秒内约62.5毫秒刷新一次参考值,若在上电后的4秒内有触摸按键或4秒后仍未触摸按键,则重新校准周期切换时间约为1秒 • 4S无触摸进入待机模式 ————————————————— 标准触控IC-电池供电系列: VKD223EB --- 工作电压/电流:2.0V-5.5V/5uA-3V 感应通道数:1 通讯界面 最长回应时间快速模式60mS,低功耗模式220ms 封装:SOT23-6 VKD223B --- 工作电压/电流:2.0V-5.5V/5uA-3V 感应通道数:1 通讯界面 最长回应时间快速模式60mS,低功耗模式220ms 封装:SOT23-6 VKD233DB --- 工作电压/电流:2.4V-5.5V/2.5uA-3V 1感应按键 封装:SOT23-6 通讯界面:直接输出,锁存(toggle)输出 低功耗模式电流2.5uA-3V VKD233DH ---工作电压/电流:2.4V-5.5V/2.5uA-3V 1感应按键 封装:SOT23-6 通讯界面:直接输出,锁存(toggle)输出 有效键最长时间检测16S VKD233DS --- 工作电压/电流:2.4V-5.5V/2.5uA-3V 1感应按键 封装:DFN6(2*2超小封装) 通讯界面:直接输出,锁存(toggle)输出 低功耗模式电流2.5uA-3V VKD233DR --- 工作电压/电流:2.4V-5.5V/1.5uA-3V 1感应按键 封装:DFN6(2*2超小封装) 通讯界面:直接输出,锁存(toggle)输出 低功耗模式电流1.5uA-3V VKD233DG --- 工作电压/电流:2.4V-5.5V/2.5uA-3V 1感应按键 封装:DFN6(2*2超小封装) 通讯界面:直接输出,锁存(toggle)输出 低功耗模式电流2.5uA-3V VKD233DQ --- 工作电压/电流:2.4V-5.5V/5uA-3V 1感应按键 封装:SOT23-6 通讯界面:直接输出,锁存(toggle)输出 低功耗模式电流5uA-3V VKD233DM --- 工作电压/电流:2.4V-5.5V/5uA-3V 1感应按键 封装:SOT23-6 (开漏输出) 通讯界面:开漏输出,锁存(toggle)输出 低功耗模式电流5uA-3V VKD232C --- 工作电压/电流:2.4V-5.5V/2.5uA-3V 感应通道数:2 封装:SOT23-6 通讯界面:直接输出,低电平有效 固定为多键输出模式,内建稳压电路 MTP触摸IC——VK36N系列抗电源辐射及手机干扰: VK3601L --- 工作电压/电流:2.4V-5.5V/4UA-3V3 感应通道数:1 1对1直接输出 待机电流小,抗电源及手机干扰,可通过CAP调节灵敏 封装:SOT23-6 VK36N1D --- 工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:1 1对1直接输出 触摸积水仍可操作,抗电源及手机干扰,可通过CAP调节灵敏封装:SOT23-6 VK36N2P --- 工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:2 脉冲输出 触摸积水仍可操作,抗电源及手机干扰,可通过CAP调节灵敏封装:SOT23-6 VK3602XS ---工作电压/电流:2.4V-5.5V/60UA-3V 感应通道数:2 2对2锁存输出 低功耗模式电流8uA-3V,抗电源辐射干扰,宽供电电压 封装:SOP8 VK3602K --- 工作电压/电流:2.4V-5.5V/60UA-3V 感应通道数:2 2对2直接输出 低功耗模式电流8uA-3V,抗电源辐射干扰,宽供电电压 封装:SOP8 VK36N2D --- 工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:2 1对1直接输出 触摸积水仍可操作,抗电源及手机干扰,可通过CAP调节灵敏封装:SOP8 VK36N3BT ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:3 BCD码锁存输出 触摸积水仍可操作,抗电源及手机干扰,可通过CAP调节灵敏 封装:SOP8 VK36N3BD ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:3 BCD码直接输出 触摸积水仍可操作,抗电源及手机干扰,可通过CAP调节灵敏 封装:SOP8 VK36N3BO ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:3 BCD码开漏输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP8/DFN8(超小超薄体积) VK36N3D --- 工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:3 1对1直接输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N4B ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:4 BCD输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N4I---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:4 I2C输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N5D ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:5 1对1直接输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N5B ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:5 BCD输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N5I ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:5 I2C输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N6D --- 工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:6 1对1直接输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N6B ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:6 BCD输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N6I ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:6 I2C输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N7B ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:7 BCD输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N7I ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:7 I2C输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N8B ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:8 BCD输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N8I ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:8 I2C输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N9I ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:9 I2C输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) VK36N10I ---工作电压/电流:2.2V-5.5V/7UA-3V3 感应通道数:10 I2C输出 触摸积水仍可操作,抗电源及手机干扰 封装:SOP16/DFN16(超小超薄体积) 1-8点高灵敏度液体水位检测IC——VK36W系列 VK36W1D ---工作电压/电流:2.2V-5.5V/10UA-3V3 1对1直接输出 水位检测通道:1 可用于不同壁厚和不同水质水位检测,抗电源/手机干扰封装:SOT23-6 备注:1. 开漏输出低电平有效 2、适合需要抗干扰性好的应用 VK36W2D ---工作电压/电流:2.2V-5.5V/10UA-3V3 1对1直接输出 水位检测通道:2 可用于不同壁厚和不同水质水位检测,抗电源/手机干扰封装:SOP8 备注:1. 1对1直接输出 2、输出模式/输出电平可通过IO选择 VK36W4D ---工作电压/电流:2.2V-5.5V/10UA-3V3 1对1直接输出 水位检测通道:4 可用于不同壁厚和不同水质水位检测,抗电源/手机干扰封装:SOP16/DFN16 备注:1. 1对1直接输出 2、输出模式/输出电平可通过IO选择 VK36W6D ---工作电压/电流:2.2V-5.5V/10UA-3V3 1对1直接输出 水位检测通道:6 可用于不同壁厚和不同水质水位检测,抗电源/手机干扰封装:SOP16/DFN16 备注:1. 1对1直接输出 2、输出模式/输出电平可通过IO选择 VK36W8I ---工作电压/电流:2.2V-5.5V/10UA-3V3 I2C输出 水位检测通道:8 可用于不同壁厚和不同水质水位检测,抗电源/手机干扰封装:SOP16/DFN16 备注:1. IIC+INT输出 2、输出模式/输出电平可通过IO选择 KPP878
标签: 3603 VK 脚位 电源供电 电子秤 触摸检测 芯片
上传时间: 2022-04-14
上传用户:shubashushi66
一款用于NTC热敏电阻阻值及电路应用下ADC值生成的通用计算工具目前仍然为免费软件—对热敏电阻没有型号限值,只要输入相关的参数即可;—3种输出选择:NTC阻值RT表;NTC接激励电压分压电阻形式下的ADC值;NTC接GND的分压电阻形式下的ADC值—NTC值的有效位选择;—ADC的分辨率选择;—输出到粘贴板,直接拷贝即可使用于软件应用—应用说明,NTC特性介绍
上传时间: 2022-06-15
上传用户:
超声波电源广泛应用于超声波加工、诊断、清洗等领域,其负载超声波换能器是一种将超音频的电能转变为机械振动的器件。由于超声换能器是一种容性负载,因此换能器与发生器之间需要进行阻抗匹配才能工作在最佳状态。串联匹配能够有效滤除开关型电源输出方波存在的高次谐波成分,因此应用较为广泛。但是环境温度或元件老化等原因会导致换能器的谐振频率发生漂移,使谐振系统失谐。传统的解决办法就是频率跟踪,但是频率跟踪只能保证系统整体电压电流同频同相,由于工作频率改变了而匹配电感不变,此时换能器内部动态支路工作在非谐振状态,导致换能器功率损耗和发热,致使输出能量大幅度下降甚至停振,在实际应用中受到限制。所以,在跟踪谐振点调节逆变器开关频率的同时应改变匹配电感才能使谐振系统工作在最高效能状态。针对按固定谐振点匹配超声波换能器电感参数存在的缺点,本文应用耦合振荡法对换能器的匹配电感和耦合频率之间的关系建立数学模型,证实了匹配电感随谐振频率变化的规律。给出利用这一模型与耦合工作频率之间的关系动态选择换能器匹配电感的方法。经过分析比较,选择了基于磁通控制原理的可控电抗器作为匹配电感,通过改变电抗控制度调节电抗值。并给出了实现这一方案的电路原理和控制方法。最后本文以DSPTMS320F2812为核心设计出实现这一原理的超声波逆变电源。实验结果表明基于磁通控制的可控电抗器可以实现电抗值随电抗控制度线性无级可调,由于该电抗器输出正弦波,理论上没有谐波污染。具体采用复合控制策略,稳态时,换能器工作在DPLL锁定频率上;动态时,逐步修改匹配电抗大小,搜索输出电流的最大值,再结合DPLL锁定该频率。配合PS-PWM可实现功率连续可调。该超声波换能系统能够有效的跟随最大电流输出频率,即使频率发生漂移系统仍能保持工作在最佳状态,具有实际应用价值。
上传时间: 2022-06-18
上传用户:
激光探测技术是激光技术的一个最重要的方面。激光由于具有高亮度和方向性、单色性好等特点,因此在国防和民用领域中正发挥着越来越重的作用。脉冲激光探测技术作为激光探测技术的一种方式,正在成为世界研究的热点。本文以激光雷达为研究背景,在通过增大接收系统口径提高回波信号信噪比的前提下,从理论和实验上研究了脉冲激光回波信号特性对探测性能的影响。在理论和设计方面,本文首先对几种激光探测技术进行深入的研究。对脉冲激光测距中回波信号进行分析,并建立信噪比测距方程,在此基础上,推导回波信号功率和系统噪声公式。定量分析了接收系统三种主要的噪声,并从接收系统出发,研究接收口径和接收视场对探测信噪比的影响,在设计上,采用大口径物镜以提高回波信号强度,采用雪崩光电二极管(APD)作为光电探测器件,通过干涉滤光片和视场光阑降低系统背景噪声以提高回波信号信噪比。前置放大电路采用跨导放大电路结构,有效地对APD所输出的微弱电流信号进行放大。在实验方面,通过大量的实验和实验数据,研究了回波信号幅值和测距误差以及测距不确定度的关系,发现回波信号幅值越大,系统的测距误差和测距不确定度越小。研究了脉冲激光回波信号的幅值和上升时间的统计分布。分析了测距系统带宽对于系统探测概率和漏测率的影响,发现过小的系统带宽会使系统探测特性发生恶化。最后,对信噪比和探测概率的关系做了实验研究。本文的研究对脉冲激光探测理论有一定的完善作用,对后续系统的研制和探测指标的改善有很好的参考价值。
上传时间: 2022-06-20
上传用户:得之我幸78
一、IGBT 驱动1 驱动电压的选择IGBT 模块GE 间驱动电压可由不同地驱动电路产生。典型的驱动电路如图1 所示。图1 IGBT 驱动电路示意图Q1,Q2 为驱动功率推挽放大,通过光耦隔离后的信号需通过Q1,Q2 推挽放大。选择Q1,Q2 其耐压需大于50V 。选择驱动电路时,需考虑几个因素。由于IGBT 输入电容较MOSFET 大,因此IGBT 关断时,最好加一个负偏电压,且负偏电压比MOSFET 大, IGBT 负偏电压最好在-5V~-10V 之内;开通时,驱动电压最佳值为15V 10% ,15V 的驱动电压足够使IGBT 处于充分饱和,这时通态压降也比较低,同时又能有效地限制短路电流值和因此产生的应力。若驱动电压低于12V ,则IGBT 通态损耗较大, IGBT 处于欠压驱动状态;若 VGE >20V ,则难以实现电流的过流、短路保护,影响 IGBT 可靠工作。2 栅极驱动功率的计算由于IGBT 是电压驱动型器件,需要的驱动功率值比较小,一般情况下可以不考虑驱动功率问题。但对于大功率IGBT ,或要求并联运行的IGBT 则需要考虑驱动功率。IGBT 栅极驱动功率受到驱动电压即开通VGE( ON )和关断 VGE( off ) 电压,栅极总电荷 QG 和开关 f 的影响。栅极驱动电源的平均功率 PAV 计算公式为:PAV =(VGE(ON ) +VGE( off ) )* QG *f对一般情况 VGE( ON ) =15V,VGE( off ) =10V,则 PAV 简化为: PAV =25* QG *f。f 为 IGBT 开关频率。栅极峰值电流 I GP 为:
上传时间: 2022-06-21
上传用户:
IGBT关断电压尖峰是其中的主要问题,解决它的最有效方法是采用叠层母线连接器件。针对二极管籍位型三电平拓扑两个基本强追换流回路,本文用ANSOFT Q3D软件比较研究了三类适用于多层母线排的叠层方案,并提出了一种新颖的叠层母线分组连接结构,结合特殊设计的吸收电容布局,减小了各IGBT模块的关断过冲,省去阻容吸收电路,并优化了高频电流在不同电容间的分布,抑制电解电容发热。通过理论计算与仿真两种方式计算该设计方案的杂散电感,并用实验加以证实。本文还设计了大面积一体化水冷散热器,表面可以贴装15个功率器件和若干传感器和平衡电阻,采用水冷方式以迅速带走满载运行时开关器件的损耗发热,并能达到结构紧凑和防爆的效果。在散热器内部设计了细槽水道结构以避开100多个定位螺孔,同时可以获得更大的热交换面积。本文分析了SCALE驱动芯片的两类器件级短路保护原理,并设计了针对两类保护动作的阈值测试实验,以确保每个器件在安全范围内工作;设计了系统控制和三类系统级保护电路:驱动板和控制板的布局布线经过合理安排能在较强的电磁干扰下正常工作。论文最后,在电抗器、电阻器、异步感应电机等不同类型、各功率等级负载下,对变流模块进行了测试,并解决了直流中点电压平衡问题。各实验证实了设计理论并体现了良好的应用效果。
上传时间: 2022-06-22
上传用户:
模块使用霍尔传感器 WCS1800 来检测直流回路中的电流。带有模拟信号和电平信号两种输出。可预设阀值,并带有过流指示灯。 可用于智能小车电机过流检测、堵转保护电流检测。短路保护检测、演示教学实验等场合。
上传时间: 2022-06-30
上传用户:
msp430系列单片机时钟模块主要有以下部件构成:·高速晶体振荡器·低速晶体振荡器·数字控制振荡器·锁频环FLL以及锁频环增强版本FLL+为适应系统和具体应用需求,MSP430系列单片机的系统时钟须满足以下不同要求:·高频率,用于对系统硬件需求和外部事件快速反应。·低频率,用于降低电流消耗。·稳定的频率,以满足定时应用,如实时时钟RTC。·低Q值振荡器,用于保证开始及停止操作最小时间延迟。为了实现上面这些要求,我们在实际中采用锁频环FLL以及锁频环增强版本FLL+等部件来将晶振频率倍频至系统频率:LFXT1满足了低功耗以及使用32768Hz晶振的要求,晶振只需经过XIN和XOUT两个引脚连接,不需要其他外部器件。LFXT1振荡器在PUC信号有效时开始工作,PUC信号有效后会将SR寄存器(状态寄存器)中的OscOff位复位,即允许LFTX1工作。
标签: msp430
上传时间: 2022-07-28
上传用户:
模具标准化是加速新产品开发的有效途径
上传时间: 2013-04-15
上传用户:eeworm